Numerical Experiments to Analyze Cloud Microphysical Processes Depicted in Vertical Profiles of Radar Reflectivity of Warm Clouds

Naomi Kuba Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Japan

Search for other papers by Naomi Kuba in
Current site
Google Scholar
PubMed
Close
,
Kentaroh Suzuki Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Japan

Search for other papers by Kentaroh Suzuki in
Current site
Google Scholar
PubMed
Close
,
Tempei Hashino Research Institute for Applied Mechanics, Kyushu University, Fukuoka, Japan

Search for other papers by Tempei Hashino in
Current site
Google Scholar
PubMed
Close
,
Tatsuya Seiki Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan

Search for other papers by Tatsuya Seiki in
Current site
Google Scholar
PubMed
Close
, and
Masaki Satoh Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, and Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan

Search for other papers by Masaki Satoh in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Information about microphysical processes in warm clouds embedded in satellite measurements must be untangled to be used to improve the parameterization in global models. In this paper, the relationship between vertical profiles of horizontally averaged radar reflectivity Zm and cloud optical depth from cloud top τd was investigated using a hybrid cloud microphysical model and a forward simulator of satellite measurements. The particle size distributions were explicitly simulated using a bin method in a kinematic framework. In contrast to previous interpretations of satellite-observed data, three patterns of the Zmτd relationship related to microphysical processes were identified. The first is related to the autoconversion process, which causes Zm to increase upward with decreasing τd. Before the initiation of surface precipitation, Zm increases downward with τd in the upper part of the cloud, which is considered to be a second characteristic pattern and is caused by the accretion process. The appearance of this pattern corresponds to the initiation of efficient production of raindrops in the cloud. The third is related to the sedimentation and evaporation of raindrops causing Zm to decrease downward with τd in the lower part of the Zmτd relationship. It was also found that the bulk collection efficiency has a partially positive correlation with the slope factor of Zm with regard to τd and that the slope factor could be a gross measure of the collection efficiency in partial cases. This study also shows that differences in the aerosol concentration modulate the duration of these three patterns and change the slope factor of Zm.

Corresponding author address: Naomi Kuba, Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5 Kashiwano-ha, Kashiwa-shi, Chiba 277-8568, Japan. E-mail: kuba@aori.u-tokyo.ac.jp

Abstract

Information about microphysical processes in warm clouds embedded in satellite measurements must be untangled to be used to improve the parameterization in global models. In this paper, the relationship between vertical profiles of horizontally averaged radar reflectivity Zm and cloud optical depth from cloud top τd was investigated using a hybrid cloud microphysical model and a forward simulator of satellite measurements. The particle size distributions were explicitly simulated using a bin method in a kinematic framework. In contrast to previous interpretations of satellite-observed data, three patterns of the Zmτd relationship related to microphysical processes were identified. The first is related to the autoconversion process, which causes Zm to increase upward with decreasing τd. Before the initiation of surface precipitation, Zm increases downward with τd in the upper part of the cloud, which is considered to be a second characteristic pattern and is caused by the accretion process. The appearance of this pattern corresponds to the initiation of efficient production of raindrops in the cloud. The third is related to the sedimentation and evaporation of raindrops causing Zm to decrease downward with τd in the lower part of the Zmτd relationship. It was also found that the bulk collection efficiency has a partially positive correlation with the slope factor of Zm with regard to τd and that the slope factor could be a gross measure of the collection efficiency in partial cases. This study also shows that differences in the aerosol concentration modulate the duration of these three patterns and change the slope factor of Zm.

Corresponding author address: Naomi Kuba, Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5 Kashiwano-ha, Kashiwa-shi, Chiba 277-8568, Japan. E-mail: kuba@aori.u-tokyo.ac.jp
Save
  • Bony, S., and J. L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, doi:10.1029/2005GL023851.

    • Search Google Scholar
    • Export Citation
  • Bott, A., 1998: A flux method for the numerical solution of the stochastic collection equation. J. Atmos. Sci., 55, 22842293, doi:10.1175/1520-0469(1998)055<2284:AFMFTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, J.-P., and D. Lamb, 1994: Simulation of cloud microphysical and chemical processes using a multicomponent framework. Part I: Description of the microphysical model. J. Atmos. Sci., 51, 26132630, doi:10.1175/1520-0469(1994)051<2613:SOCMAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., S. Tzivion, and Z. Levin, 1988: Evolution of raindrop spectra. Part I: Solution to the stochastic collection/breakup equation using the method of moments. J. Atmos. Sci., 45, 33873399, doi:10.1175/1520-0469(1988)045<3387:EORSPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., X. Wu, M. W. Moncrieff, and W. D. Hall, 1998: Cloud-resolving modeling of cloud systems during Phase III of GATE. Part II: Effects of resolution and the third spatial dimension. J. Atmos. Sci., 55, 32643282, doi:10.1175/1520-0469(1998)055<3264:CRMOCS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hall, W. D., 1980: A detailed microphysical model within a two-dimensional dynamic framework: Model description and preliminary results. J. Atmos. Sci., 37, 24862507, doi:10.1175/1520-0469(1980)037<2486:ADMMWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hashino, T., M. Satoh, Y. Hagihara, T. Kubota, T. Matsui, T. Nasuno, and H. Okamoto, 2013: Evaluating cloud microphysics from NICAM against CloudSat and CALIPSO. J. Geophys. Res. Atmos., 118, 7273–7292, doi:10.1002/jgrd.50564.

    • Search Google Scholar
    • Export Citation
  • Kuba, N., and Y. Fujiyoshi, 2006: Development of a cloud microphysical model and parameterizations to describe the effect of CCN on warm cloud. Atmos. Chem. Phys., 6, 27932810, doi:10.5194/acp-6-2793-2006.

    • Search Google Scholar
    • Export Citation
  • Kuba, N., and M. Murakami, 2010: Effect of hygroscopic seeding on warm rain clouds—Numerical study using a hybrid cloud microphysical model. Atmos. Chem. Phys., 10, 33353351, doi:10.5194/acp-10-3335-2010.

    • Search Google Scholar
    • Export Citation
  • Kuba, N., T. Hashino, M. Satoh, and K. Suzuki, 2014: Relationships between layer-mean radar reflectivity and columnar effective radius of warm cloud: Numerical study using a cloud microphysical bin model. J. Geophys. Res. Atmos., 119, 3281–3294, doi:10.1002/2013JD020276.

    • Search Google Scholar
    • Export Citation
  • Masunaga, H., and C. D. Kummerow, 2005: Combined radar and radiometer analysis of precipitation profiles for a parametric retrieval algorithm. J. Atmos. Oceanic Technol., 22, 909929, doi:10.1175/JTECH1751.1.

    • Search Google Scholar
    • Export Citation
  • Masunaga, H., T. Y. Nakajima, T. Nakajima, M. Kachi, and K. Suzuki, 2002: Physical properties of maritime low clouds as retrieved by combined use of Tropical Rainfall Measuring Mission (TRMM) Microwave Imager and Visible/Infrared Scanner, 2. Climatology of warm clouds and rain. J. Geophys. Res., 107, 4367, doi:10.1029/2001JD001269.

    • Search Google Scholar
    • Export Citation
  • Matsui, T., H. Masunaga, R. A. Pielke Sr., and W.-K. Tao, 2004: Impact of aerosols and atmospheric thermodynamics on cloud properties within the climate system. Geophys. Res. Lett., 31, L06109, doi:10.1029/2003GL019287.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., and M. Tanaka, 1986: Matrix formulations for the transfer of solar radiation in a plane-parallel scattering atmosphere. J. Quant. Spectrosc. Radiat. Transfer, 35, 1321, doi:10.1016/0022-4073(86)90088-9.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., and M. Tanaka, 1988: Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation. J. Quant. Spectrosc. Radiat. Transfer, 40, 5169, doi:10.1016/0022-4073(88)90031-3.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T. Y., K. Suzuki, and G. L. Stephens, 2010: Droplet growth in warm water clouds observed by the A-Train. Part II: A multisensor view. J. Atmos. Sci., 67, 18971907, doi:10.1175/2010JAS3276.1.

    • Search Google Scholar
    • Export Citation
  • Noda, A. T., K. Oouchi, M. Satoh, H. Tomita, S. Iga, and Y. Tsushima, 2010: Importance of the subgrid-scale turbulent moist process: Cloud distribution in global cloud-resolving simulations. Atmos. Res., 96, 208217, doi:10.1016/j.atmosres.2009.05.007.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2nd ed. Kluwer Academic Publishers, 954 pp.

  • Reisin, T. R., Y. Yin, Z. Levein, and S. Tzivion, 1998: Development of giant drops and high-reflectivity cores in Hawaiian clouds: Numerical simulations using a kinematic model with detailed microphysics. Atmos. Res., 45, 275297, doi:10.1016/S0169-8095(97)00081-1.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics. Elsevier, 293 pp.

  • Rosenfeld, D., and I. Lensky, 1998: Satellite-based insights into precipitation formation processes in continental and maritime convective clouds. Bull. Amer. Meteor. Soc., 79, 24572476, doi:10.1175/1520-0477(1998)079<2457:SBIIPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sato, Y., T. Y. Nakajima, and T. Nakajima, 2012: Investigation of the vertical structure of warm-cloud microphysical properties using the cloud evolution diagram, CFODD, simulated by a three-dimensional spectral bin microphysical model. J. Atmos. Sci., 69, 20122030, doi:10.1175/JAS-D-11-0244.1.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., A. Khain, U. Blahak, and K. D. Beheng, 2005: Possible effect of collisional breakup on mixed-phase deep convection simulated by a spectral (bin) cloud model. J. Atmos. Sci., 62, 19171931, doi:10.1175/JAS3432.1.

    • Search Google Scholar
    • Export Citation
  • Suzuki, K., and G. L. Stephens, 2008: Global identification of warm cloud microphysical processes with combined use of A-Train observations. Geophys. Res. Lett., 35, L08805, doi:10.1029/2008GL033590.

    • Search Google Scholar
    • Export Citation
  • Suzuki, K., T. Nakajima, T. Y. Nakajima, and A. Khain, 2006: Correlation pattern between effective radius and optical thickness of water clouds simulated by a spectral bin microphysics cloud model. SOLA, 2, 116119, doi:10.2151/sola.2006-030.

    • Search Google Scholar
    • Export Citation
  • Suzuki, K., T. Y. Nakajima, and G. L. Stephens, 2010: Particle growth and drop collection efficiency of warm clouds as inferred from joint CloudSat and MODIS observations. J. Atmos. Sci., 67, 30193032, doi:10.1175/2010JAS3463.1.

    • Search Google Scholar
    • Export Citation
  • Szumowski, M. J., W. W. Grabowski, and H. T. Ochs III, 1998a: Simple two-dimensional kinematic framework designed to test warm rain microphysical models. Atmos. Res., 45, 299326, doi:10.1016/S0169-8095(97)00082-3.

    • Search Google Scholar
    • Export Citation
  • Szumowski, M. J., R. M. Rauber, H. T. Ochs III, and K. V. Beard, 1998b: The microphysical structure and evolution of Hawaiian rainband clouds. Part II: Aircraft measurements within rainbands containing high reflectivity cores. J. Atmos. Sci., 55, 208226, doi:10.1175/1520-0469(1998)055<0208:TMSAEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, H., and G. Feingold, 2009: Modeling mesoscale cellular structures and drizzle in marine stratocumulus. Part I: Impact of drizzle on the formation and evolution of open cells. J. Atmos. Sci., 66, 32373256, doi:10.1175/2009JAS3022.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 188 59 7
PDF Downloads 104 38 6