Mixing Driven by Radiative and Evaporative Cooling at the Stratocumulus Top

Alberto de Lozar Max Plank Institute for Meteorology, Hamburg, Germany

Search for other papers by Alberto de Lozar in
Current site
Google Scholar
PubMed
Close
and
Juan Pedro Mellado Max Plank Institute for Meteorology, Hamburg, Germany

Search for other papers by Juan Pedro Mellado in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The stratocumulus-top mixing process is investigated using direct numerical simulations of a shear-free cloud-top mixing layer driven by evaporative and radiative cooling. An extension of previous linear formulations allows for quantifying radiative cooling, evaporative cooling, and the diffusive effects that artificially enhance mixing and evaporative cooling in high-viscosity direct numerical simulations (DNS) and many atmospheric simulations. The diffusive cooling accounts for 20% of the total evaporative cooling for the highest resolution (grid spacing ~14 cm), but this can be much larger (~100%) for lower resolutions that are commonly used in large-eddy simulations (grid spacing ~5 m). This result implies that the κ scaling for cloud cover might be strongly influenced by diffusive effects. Furthermore, the definition of the inversion point as the point of neutral buoyancy allows the derivation of two scaling laws. The in-cloud scaling law relates the velocity and buoyancy integral scales to a buoyancy flux defined by the inversion point. The entrainment-zone scaling law provides a relationship between the entrainment velocity and the liquid evaporation rate. By using this inversion point, it is shown that the radiative-cooling contribution to the entrainment velocity decouples from the evaporative-cooling contribution and behaves very similarly as in the smoke cloud. Finally, evaporative and radiative cooling have similar strengths, when this strength is measured by the integrated buoyancy source. This result partially explains why current entrainment parameterizations are not accurate enough, given that most of them implicitly assume that only one of the two mechanisms rules the entrainment.

Corresponding author address: Alberto de Lozar, Max Plank Institute for Meteorology, Bundestr. 53, 20146 Hamburg, Germany. E-mail: adelozar@gmail.com

Abstract

The stratocumulus-top mixing process is investigated using direct numerical simulations of a shear-free cloud-top mixing layer driven by evaporative and radiative cooling. An extension of previous linear formulations allows for quantifying radiative cooling, evaporative cooling, and the diffusive effects that artificially enhance mixing and evaporative cooling in high-viscosity direct numerical simulations (DNS) and many atmospheric simulations. The diffusive cooling accounts for 20% of the total evaporative cooling for the highest resolution (grid spacing ~14 cm), but this can be much larger (~100%) for lower resolutions that are commonly used in large-eddy simulations (grid spacing ~5 m). This result implies that the κ scaling for cloud cover might be strongly influenced by diffusive effects. Furthermore, the definition of the inversion point as the point of neutral buoyancy allows the derivation of two scaling laws. The in-cloud scaling law relates the velocity and buoyancy integral scales to a buoyancy flux defined by the inversion point. The entrainment-zone scaling law provides a relationship between the entrainment velocity and the liquid evaporation rate. By using this inversion point, it is shown that the radiative-cooling contribution to the entrainment velocity decouples from the evaporative-cooling contribution and behaves very similarly as in the smoke cloud. Finally, evaporative and radiative cooling have similar strengths, when this strength is measured by the integrated buoyancy source. This result partially explains why current entrainment parameterizations are not accurate enough, given that most of them implicitly assume that only one of the two mechanisms rules the entrainment.

Corresponding author address: Alberto de Lozar, Max Plank Institute for Meteorology, Bundestr. 53, 20146 Hamburg, Germany. E-mail: adelozar@gmail.com
Save
  • Albrecht, B. A., R. S. Penc, and W. H. Schubert, 1985: An observational study of cloud-topped mixed layers. J. Atmos. Sci., 42, 800822, doi:10.1175/1520-0469(1985)042<0800:AOSOCT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., 1987: A theory for nonprecipitating moist convection between two parallel plates. Part I: Thermodynamics and “linear” solutions. J. Atmos. Sci., 44, 18091827, doi:10.1175/1520-0469(1987)044<1809:ATFNMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and Coauthors, 1999: An intercomparison of radiatively driven entrainment and turbulence in a smoke cloud, as simulated by different numerical models. Quart. J. Roy. Meteor. Soc., 125, 391423, doi:10.1002/qj.49712555402.

    • Search Google Scholar
    • Export Citation
  • Carpenter, M. H., and C. A. Kennedy, 1994: Fourth-order 2N-storage Runge-Kutta schemes. NASA Langley Research Center Tech. Memo. 109112, 24 pp. [Available online at http://www.ece.uvic.ca/~bctill/papers/numacoust/Carpenter_Kennedy_1994.pdf.]

  • Deardorff, J. W., 1970: Convective velocity and temperature scales for the unstable planetary boundary layer and for Rayleigh convection. J. Atmos. Sci., 27, 12111213, doi:10.1175/1520-0469(1970)027<1211:CVATSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Cloud top entrainment instability. J. Atmos. Sci., 37, 131147, doi:10.1175/1520-0469(1980)037<0131:CTEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • De Lozar, A., and J. P. Mellado, 2013: Direct numerical simulations of a smoke cloud-top mixing layer as a model for stratocumuli. J. Atmos. Sci., 70, 23562375, doi:10.1175/JAS-D-12-0333.1.

    • Search Google Scholar
    • Export Citation
  • De Lozar, A., and J. P. Mellado, 2014: Cloud droplets in a bulk formulation and its application to buoyancy reversal instability. Quart. J. Roy. Meteor. Soc., 140, 14931504, doi:10.1002/qj.2234.

    • Search Google Scholar
    • Export Citation
  • Dimotakis, P. E., 2005: Turbulent mixing in stratified fluids. Annu. Rev. Fluid Mech., 37, 329356, doi:10.1146/annurev.fluid.36.050802.122015.

    • Search Google Scholar
    • Export Citation
  • Faloona, I., and Coauthors, 2005: Observations of entrainment in eastern Pacific marine stratocumulus using three conserved scalars. J. Atmos. Sci., 62, 32683285, doi:10.1175/JAS3541.1.

    • Search Google Scholar
    • Export Citation
  • Fernando, H. J. S., 1991: Turbulent mixing in stratified fluids. Annu. Rev. Fluid Mech., 23, 455493, doi:10.1146/annurev.fl.23.010191.002323.

    • Search Google Scholar
    • Export Citation
  • Flatau, P. J., R. L. Walko, and W. R. Cotton, 1992: Polynomial fits to saturation vapor pressure. J. Appl. Meteor., 31, 15071513, doi:10.1175/1520-0450(1992)031<1507:PFTSVP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gerber, H., G. Frick, S. P. Malinowski, H. Jonsson, D. Khelif, and S. K. Krueger, 2013: Entrainment rates and microphysics in POST stratocumulus. J. Geophys. Res. Atmos., 118, 12 09412 109, doi:10.1002/jgrd.50878.

    • Search Google Scholar
    • Export Citation
  • Haman, K. E., 2009: Simple approach to dynamics of entrainment interface layers and cloud holes in stratocumulus clouds. Quart. J. Roy. Meteor. Soc., 135, 93100, doi:10.1002/qj.363.

    • Search Google Scholar
    • Export Citation
  • Katzwinkel, J., H. Siebert, and R. A. Shaw, 2012: Observation of a self-limiting, shear-induced turbulent inversion layer above marine stratocumulus. Bound.-Layer Meteor., 145, 131143, doi:10.1007/s10546-011-9683-4.

    • Search Google Scholar
    • Export Citation
  • Klingebiel, M., and Coauthors, 2015: Arctic low-level boundary layer clouds: In-situ measurements and simulations of mono- and bimodal supercooled droplet size distributions at the cloud top layer. Atmos. Chem. Phys., 15, 617631, doi:10.5194/acp-15-617-2015.

    • Search Google Scholar
    • Export Citation
  • Larson, V. E., K. E. Kotenberg, and N. B. Wood, 2007: An analytic longwave radiation formula for liquid layer clouds. Mon. Wea. Rev., 135, 689699, doi:10.1175/MWR3315.1.

    • Search Google Scholar
    • Export Citation
  • Lele, S. K., 1992: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys., 103, 1642, doi:10.1016/0021-9991(92)90324-R.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1968: Models of cloud-topped mixed layers under a strong inversion. Quart. J. Roy. Meteor. Soc., 94, 292309, doi:10.1002/qj.49709440106.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 2002: Entrainment into mixed layers. Part II: A new closure. J. Atmos. Sci., 59, 33533361, doi:10.1175/1520-0469(2002)059<3353:EIMLPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lock, A., 1998: The parametrization of entrainment in cloudy boundary layers. Quart. J. Roy. Meteor. Soc., 124, 27292753, doi:10.1002/qj.49712455210.

    • Search Google Scholar
    • Export Citation
  • Lock, A., 2009: Factors influencing cloud area at the capping inversion for shallow cumulus clouds. Quart. J. Roy. Meteor. Soc., 135, 941952, doi:10.1002/qj.424.

    • Search Google Scholar
    • Export Citation
  • Lock, A., and M. K. Mac Vean, 1999: The parametrization of entrainment driven by surface heating and cloud-top cooling. Quart. J. Roy. Meteor. Soc., 125, 271299, doi:10.1002/qj.49712555315.

    • Search Google Scholar
    • Export Citation
  • Mellado, J. P., 2010: The evaporatively driven cloud–top mixing layer. J. Fluid Mech., 660, 536, doi:10.1017/S0022112010002831.

  • Mellado, J. P., 2012: Direct numerical simulation of free convection over a heated plate. J. Fluid Mech., 712, 418450, doi:10.1017/jfm.2012.428.

    • Search Google Scholar
    • Export Citation
  • Mellado, J. P., and C. Ansorge, 2012: Factorization of the Fourier transform of the pressure-Poisson equation using finite differences in colocated grids. Z. Angew. Math. Mech., 92, 380392, doi:10.1002/zamm.201100078.

    • Search Google Scholar
    • Export Citation
  • Mellado, J. P., B. Stevens, H. Schmidt, and N. Peters, 2009: Buoyancy reversal in cloud-top mixing layers. Quart. J. Roy. Meteor. Soc., 135, 963978, doi:10.1002/qj.417.

    • Search Google Scholar
    • Export Citation
  • Mellado, J. P., B. Stevens, H. Schmidt, and N. Peters, 2010: Two-fluid formulation of the cloud-top mixing layer for direct numerical simulation. Theor. Comput. Fluid Dyn., 24, 511536, doi:10.1007/s00162-010-0182-x.

    • Search Google Scholar
    • Export Citation
  • Mellado, J. P., B. Stevens, and H. Schmidt, 2014: Wind shear and buoyancy reversal at the top of stratocumulus. J. Atmos. Sci., 71, 10401057, doi:10.1175/JAS-D-13-0189.1.

    • Search Google Scholar
    • Export Citation
  • Moeng, C., 2000: Entrainment rate, cloud fraction, and liquid water path of PBL stratocumulus clouds. J. Atmos. Sci., 57, 36273643, doi:10.1175/1520-0469(2000)057<3627:ERCFAL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. Yaglom, 1971: Mechanics of Turbulence. Vol. 1, Statistical Fluid Mechanics, MIT Press, 782 pp.

  • Patankar, S. V., 1980: Numerical Heat Transfer and Fluid Flow. Hemisphere Series on Computational Methods in Mechanics and Thermal Science, CRC Press, 214 pp.

  • Pauluis, O., and J. Schumacher, 2010: Idealized moist Rayleigh-Benard convection with piecewise linear equation of state. Commun. Math. Sci., 8, 295319, doi:10.4310/CMS.2010.v8.n1.a15.

    • Search Google Scholar
    • Export Citation
  • Pope, S. B., 2000: Turbulent Flows.Cambridge University Press, 802 pp.

  • Randall, D. A., 1980: Conditional instability of the first kind upside-down. J. Atmos. Sci., 37, 125130, doi:10.1175/1520-0469(1980)037<0125:CIOTFK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sandu, I., and B. Stevens, 2011: On the factors modulating the stratocumulus to cumulus transitions. J. Atmos. Sci., 68, 18651881, doi:10.1175/2011JAS3614.1.

    • Search Google Scholar
    • Export Citation
  • Siems, S. T., and C. S. Bretherton, 1992: A numerical investigation of cloud-top entrainment instability and related experiments. Quart. J. Roy. Meteor. Soc., 118, 787818, doi:10.1002/qj.49711850702.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., 2002: Entrainment in stratocumulus-topped mixed layers. Quart. J. Roy. Meteor. Soc., 128, 26632690, doi:10.1256/qj.01.202.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., 2005: Atmospheric moist convection. Annu. Rev. Earth Planet. Sci., 33, 605643, doi:10.1146/annurev.earth.33.092203.122658.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2005: Evaluation of large-eddy simulations via observations of nocturnal marine stratocumulus. Mon. Wea. Rev., 133, 14431462, doi:10.1175/MWR2930.1.

    • Search Google Scholar
    • Export Citation
  • Turton, J., and S. Nicholls, 1987: A study of the diurnal variation of stratocumulus using a multiple mixed layer model. Quart. J. Roy. Meteor. Soc., 113, 9691009, doi:10.1002/qj.49711347712.

    • Search Google Scholar
    • Export Citation
  • van der Dussen, J. J., S. R. de Roode, and A. P. Siebesma, 2014: Factors controlling rapid stratocumulus cloud thinning. J. Atmos. Sci., 71, 655664, doi:10.1175/JAS-D-13-0114.1.

    • Search Google Scholar
    • Export Citation
  • van Zanten, M. C., and P. G. Duynkerke, 2002: Radiative and evaporative cooling in the entrainment zone of stratocumulus—The role of longwave radiative cooling above cloud top. Bound.-Layer Meteor., 102, 253280, doi:10.1023/A:1013129713315.

    • Search Google Scholar
    • Export Citation
  • Wood, R., 2012: Stratocumulus clouds. Mon. Wea. Rev., 140, 23732423, doi:10.1175/MWR-D-11-00121.1.

  • Yamaguchi, T., and D. A. Randall, 2008: Large-eddy simulation of evaporatively driven entrainment in cloud-topped mixed layers. J. Atmos. Sci., 65, 14811504, doi:10.1175/2007JAS2438.1.

    • Search Google Scholar
    • Export Citation
  • Yamaguchi, T., and D. A. Randall, 2012: Cooling of entrained parcels in a large-eddy simulation. J. Atmos. Sci., 69, 11181136, doi:10.1175/JAS-D-11-080.1.

    • Search Google Scholar
    • Export Citation
  • Yue, Q., B. H. Kahn, H. Xiao, M. M. Schreier, E. J. Fetzer, J. Teixeira, and K. Suselj, 2013: Transitions of cloud-topped marine boundary layers characterized by AIRS, MODIS, and a large eddy simulation model. J. Geophys. Res. Atmos., 118, 85988611, doi:10.1002/jgrd.50676.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1039 552 75
PDF Downloads 429 91 14