Modeling Condensation in Shallow Nonprecipitating Convection

Wojciech W. Grabowski National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Wojciech W. Grabowski in
Current site
Google Scholar
PubMed
Close
and
Dorota Jarecka University of Warsaw, Warsaw, Poland, and National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Dorota Jarecka in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Two schemes for modeling condensation in warm nonprecipitating clouds are compared. The first one is the efficient bulk condensation scheme where cloudy volumes are always at saturation and cloud water evaporates instantaneously to maintain saturation. The second one is the comprehensive bin condensation scheme that predicts the evolution of the cloud droplet spectrum and allows sub- and supersaturations in cloudy volumes. The emphasis is on the impact of the two schemes on cloud dynamics. Theoretical considerations show that the bulk condensation scheme provides more buoyancy than the bin scheme, but the effect is small, with the potential density temperature difference around 0.1 K for 1% supersaturation. The 1D advection–condensation tests document the high-vertical-resolution requirement for the bin scheme to resolve the cloud-base supersaturation maximum and CCN activation, which is difficult to employ in 3D cloud simulations. Simulations of shallow convection cloud fields are executed applying bulk and bin schemes, with the mean droplet concentrations in the bin scheme covering a wide range, from about 5 to over 4000 cm−3. Simulations employ the microphysical piggybacking methodology to extract impacts with high confidence. They show that the differences in cloud fields simulated with bulk and bin schemes come not from small differences in the condensation but from more significant differences in the evaporation of cloud water near cloud edges as a result of entrainment and mixing with the environment. The latter makes the impact of cloud microphysics on simulated macroscopic cloud field properties even more difficult to assess because of highly uncertain subgrid-scale parameterizations.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Wojciech W. Grabowski, NCAR, P.O. Box 3000, Boulder, CO 80301. E-mail: grabow@ucar.edu

Abstract

Two schemes for modeling condensation in warm nonprecipitating clouds are compared. The first one is the efficient bulk condensation scheme where cloudy volumes are always at saturation and cloud water evaporates instantaneously to maintain saturation. The second one is the comprehensive bin condensation scheme that predicts the evolution of the cloud droplet spectrum and allows sub- and supersaturations in cloudy volumes. The emphasis is on the impact of the two schemes on cloud dynamics. Theoretical considerations show that the bulk condensation scheme provides more buoyancy than the bin scheme, but the effect is small, with the potential density temperature difference around 0.1 K for 1% supersaturation. The 1D advection–condensation tests document the high-vertical-resolution requirement for the bin scheme to resolve the cloud-base supersaturation maximum and CCN activation, which is difficult to employ in 3D cloud simulations. Simulations of shallow convection cloud fields are executed applying bulk and bin schemes, with the mean droplet concentrations in the bin scheme covering a wide range, from about 5 to over 4000 cm−3. Simulations employ the microphysical piggybacking methodology to extract impacts with high confidence. They show that the differences in cloud fields simulated with bulk and bin schemes come not from small differences in the condensation but from more significant differences in the evaporation of cloud water near cloud edges as a result of entrainment and mixing with the environment. The latter makes the impact of cloud microphysics on simulated macroscopic cloud field properties even more difficult to assess because of highly uncertain subgrid-scale parameterizations.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Wojciech W. Grabowski, NCAR, P.O. Box 3000, Boulder, CO 80301. E-mail: grabow@ucar.edu
Save
  • Árnason, G., and R. S. Greenfield, 1972: Micro- and macro-structures of numerically simulated convective clouds. J. Atmos. Sci., 29, 342367, doi:10.1175/1520-0469(1972)029<0342:MAMSON>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brenguier, J.-L., and W. W. Grabowski, 1993: Cumulus entrainment and cloud droplet spectra: A numerical model within a two-dimensional dynamical framework. J. Atmos. Sci., 50, 120136, doi:10.1175/1520-0469(1993)050<0120:CEACDS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2007: Representation of turbulent mixing and buoyancy reversal in bulk cloud models. J. Atmos. Sci., 64, 36663680, doi:10.1175/JAS4047.1.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2014: Extracting microphysical impacts in large-eddy simulations of shallow convection. J. Atmos. Sci., 71, 44934499, doi:10.1175/JAS-D-14-0231.1.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2015: Untangling microphysical impacts on deep convection applying a novel modeling methodology. J. Atmos. Sci., 72, 24462464, doi:10.1175/JAS-D-14-0307.1.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and P. K. Smolarkiewicz, 1990: Monotone finite-difference approximations to the advection-condensation problem. Mon. Wea. Rev., 118, 20822098, doi:10.1175/1520-0493(1990)118<2082:MFDATT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and P. K. Smolarkiewicz, 2002: A multiscale anelastic model for meteorological research. Mon. Wea. Rev., 130, 939955, doi:10.1175/1520-0493(2002)130<0939:AMAMFM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and L.-P. Wang, 2009: Diffusional and accretional growth of water drops in a rising adiabatic parcel: Effects of the turbulent collision kernel. Atmos. Chem. Phys., 9, 23352353, doi:10.5194/acp-9-2335-2009.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and L.-P. Wang, 2013: Growth of cloud droplets in a turbulent environment. Annu. Rev. Fluid Mech., 45, 293324, doi:10.1146/annurev-fluid-011212-140750.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., O. Thouron, J.-P. Pinty, and J.-L. Brenguier, 2010: A hybrid bulk-bin approach to model warm-rain processes. J. Atmos. Sci., 67, 385399, doi:10.1175/2009JAS3155.1.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., M. Andrejczuk, and L.-P. Wang, 2011: Droplet growth in a bin warm-rain scheme with Twomey CCN activation. Atmos. Res., 99, 290301, doi:10.1016/j.atmosres.2010.10.020.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., L.-P. Wang, and T. V. Prabha, 2015: Macroscopic impacts of cloud and precipitation processes on maritime shallow convection as simulated by a large eddy simulation model with bin microphysics. Atmos. Chem. Phys., 15, 913926, doi:10.5194/acp-15-913-2015.

    • Search Google Scholar
    • Export Citation
  • Grinstein, F. F., L. G. Margolin, and W. J. Rider, 2007: Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics. Cambridge University Press, 578 pp.

  • Holland, J. Z., and E. M. Rasmusson, 1973: Measurements of the atmospheric mass, energy, and momentum budgets over a 500-kilometer square of tropical ocean. Mon. Wea. Rev., 101, 4455, doi:10.1175/1520-0493(1973)101<0044:MOTAME>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Igel, A. L., M. R. Igel, and S. C. van den Heever, 2015: Make it a double? Sobering results from simulations using single-moment microphysics schemes. J. Atmos. Sci., 72, 910925, doi:10.1175/JAS-D-14-0107.1.

    • Search Google Scholar
    • Export Citation
  • Jarecka, D., W. W. Grabowski, and H. Pawlowska, 2009: Modeling of subgrid-scale mixing in large-eddy simulation of shallow convection. J. Atmos. Sci., 66, 21252133, doi:10.1175/2009JAS2929.1.

    • Search Google Scholar
    • Export Citation
  • Jarecka, D., W. W. Grabowski, H. Morrison, and H. Pawlowska, 2013: Homogeneity of the subgrid-scale turbulent mixing in large-eddy simulation of shallow convection. J. Atmos. Sci., 70, 27512767, doi:10.1175/JAS-D-13-042.1.

    • Search Google Scholar
    • Export Citation
  • Kogan, Y. L., 1991: The simulation of a convective cloud in a 3-D model with explicit microphysics. Part I: Model description and sensitivity experiments. J. Atmos. Sci., 48, 11601189, doi:10.1175/1520-0469(1991)048<1160:TSOACC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kogan, Y. L., and W. J. Martin, 1994: Parameterization of bulk condensation in numerical cloud models. J. Atmos. Sci., 51, 17281739, doi:10.1175/1520-0469(1994)051<1728:POBCIN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kohler, H., 1936: The nucleus in and the growth of hygroscopic droplets. Trans. Faraday Soc., 32, 11521161, doi:10.1039/TF9363201152.

    • Search Google Scholar
    • Export Citation
  • Margolin, L. G., W. J. Rider, and F. F. Grinstein, 2006: Modeling turbulent flow with implicit les. J. Turbul., 7, N15, doi:10.1080/14685240500331595.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and W. W. Grabowski, 2007: Comparison of bulk and bin warm-rain microphysics models using a kinematic framework. J. Atmos. Sci., 64, 28392861, doi:10.1175/JAS3980.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and W. W. Grabowski, 2008: Modeling supersaturation and subgrid-scale mixing with two-moment bulk warm microphysics. J. Atmos. Sci., 65, 792812, doi:10.1175/2007JAS2374.1.

    • Search Google Scholar
    • Export Citation
  • Petters, M. D., and S. M. Kreidenweis, 2007: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys., 7, 19611971, doi:10.5194/acp-7-1961-2007.

    • Search Google Scholar
    • Export Citation
  • Politovich, M. K., and W. A. Cooper, 1988: Variability of the supersaturation in cumulus clouds. J. Atmos. Sci., 45, 16511664, doi:10.1175/1520-0469(1988)045<1651:VOTSIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Prabha, T. V., A. Khain, R. Maheshkumar, G. Pandithurai, J. Kulkarni, M. Konwar, and B. Goswami, 2011: Microphysics of premonsoon and monsoon clouds as seen from in situ measurements during the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX). J. Atmos. Sci., 68, 18821901, doi:10.1175/2011JAS3707.1.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic Publishers, 954 pp.

  • Prusa, J. M., P. K. Smolarkiewicz, and A. A. Wyszogrodzki, 2008: EULAG, a computational model for multiscale flows. Comput. Fluids, 37, 11931207, doi:10.1016/j.compfluid.2007.12.001.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics. 3rd ed. Butterworth-Heinemann, 304 pp.

  • Rosenfeld, D., U. Lohmann, G. B. Raga, C. D. O’Dowd, M. Kulmala, S. Fuzzi, A. Reissell, and M. O. Andreae, 2008: Flood or drought: How do aerosols affect precipitation? Science, 321, 1309–1313, doi:10.1126/science.1160606.

    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., and W. R. Cotton, 2004: A large-droplet mode and prognostic number concentration of cloud droplets in the Colorado State University Regional Atmospheric Modeling System (RAMS). Part I: Module descriptions and supercell test simulations. J. Appl. Meteor., 43, 182195, doi:10.1175/1520-0450(2004)043<0182:ALMAPN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and Coauthors, 2003: A large eddy simulation intercomparison study of shallow cumulus convection. J. Atmos. Sci., 60, 12011219, doi:10.1175/1520-0469(2003)60<1201:ALESIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Slawinska, J., W. W. Grabowski, H. Pawlowska, and H. Morrison, 2012: Droplet activation and mixing in large-eddy simulation of a shallow cumulus field. J. Atmos. Sci., 69, 444462, doi:10.1175/JAS-D-11-054.1.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., 2006: Multidimensional positive definite advection transport algorithm: An overview. Int. J. Numer. Methods Fluids, 50, 11231144, doi:10.1002/fld.1071.

    • Search Google Scholar
    • Export Citation
  • Soong, S.-T., and Y. Ogura, 1973: A comparison between axisymmetric and slab-symmetric cumulus cloud models. J. Atmos. Sci., 30, 879893, doi:10.1175/1520-0469(1973)030<0879:ACBAAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Squires, P., 1952: The growth of cloud drops by condensation. I. General characteristics. Aust. J. Chem., 5, 5986, doi:10.1071/CH9520059.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and A. Seifert, 2008: Understanding macrophysical outcomes of microphysical choices in simulations of shallow cumulus convection. J. Meteor. Soc. Japan, 86A, 143–162, doi:10.2151/jmsj.86A.143.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1959: The nuclei of natural cloud formation part II: The supersaturation in natural clouds and the variation of cloud droplet concentration. Geofis. Pura Appl., 43, 243249, doi:10.1007/BF01993560.

    • Search Google Scholar
    • Export Citation
  • Warner, J., 1968: The supersaturation in natural clouds. J. Rech. Atmos., 3, 233237.

  • Wyszogrodzki, A. A., W. W. Grabowski, L.-P. Wang, and O. Ayala, 2013: Turbulent collision-coalescence in maritime shallow convection. Atmos. Chem. Phys., 13, 84718487, doi:10.5194/acp-13-8471-2013.

    • Search Google Scholar
    • Export Citation
  • Xue, H., and G. Feingold, 2006: Large-eddy simulations of trade wind cumuli: Investigation of aerosol indirect effects. J. Atmos. Sci., 63, 16051622, doi:10.1175/JAS3706.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 271 85 8
PDF Downloads 217 62 4