Linking Phytoplankton Activity in Polynyas and Sulfur Aerosols over Zhongshan Station, East Antarctica

Miming Zhang Key Laboratory of Global Change and Marine-Atmospheric Chemistry, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China

Search for other papers by Miming Zhang in
Current site
Google Scholar
PubMed
Close
,
Liqi Chen Key Laboratory of Global Change and Marine-Atmospheric Chemistry, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China

Search for other papers by Liqi Chen in
Current site
Google Scholar
PubMed
Close
,
Guojie Xu Department of Earth and Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey

Search for other papers by Guojie Xu in
Current site
Google Scholar
PubMed
Close
,
Qi Lin Key Laboratory of Global Change and Marine-Atmospheric Chemistry, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China

Search for other papers by Qi Lin in
Current site
Google Scholar
PubMed
Close
, and
Minyi Liang Space and Atmospheric Physics Group, Department of Physics, Imperial College London, London, United Kingdom

Search for other papers by Minyi Liang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Multiple year-round aerosol samplings were conducted from February 2005 to October 2008 at Zhongshan Station, a research base in East Antarctica, to study methanesulfonic acid (MSA) and non-sea-salt sulfate (nss-SO42−). The concentrations of atmospheric sulfur species exhibited a seasonal cycle; the maximum and minimum concentrations occurred in austral summer and austral winter, respectively. Significant correlations between chlorophyll a (Chl a) in offshore polynyas and both MSA (r = 0.726, n = 52, and p < 0.01) and nss-SO42− (r = 0.724, n = 48, and p < 0.01) were found, indicating that the phytoplankton activity had a crucial effect on the sulfur aerosols. The sea ice dynamics in the polynyas and the variations in the polynya area may indirectly influence the sulfur aerosols in austral spring and summer. In austral winter, the sulfur compounds in the atmosphere are primarily originating in long-range transported by-products from remote regions because nearly no phytoplankton activity occurred in the offshore polynyas.

Corresponding author address: Liqi Chen, Third Institute of Oceanography, State Oceanic Administration, 178 Daxue Road, Xiamen, Fujian 361005, China. E-mail: lqchen@soa.gov.cn

Denotes Chemistry/Aerosol content

Abstract

Multiple year-round aerosol samplings were conducted from February 2005 to October 2008 at Zhongshan Station, a research base in East Antarctica, to study methanesulfonic acid (MSA) and non-sea-salt sulfate (nss-SO42−). The concentrations of atmospheric sulfur species exhibited a seasonal cycle; the maximum and minimum concentrations occurred in austral summer and austral winter, respectively. Significant correlations between chlorophyll a (Chl a) in offshore polynyas and both MSA (r = 0.726, n = 52, and p < 0.01) and nss-SO42− (r = 0.724, n = 48, and p < 0.01) were found, indicating that the phytoplankton activity had a crucial effect on the sulfur aerosols. The sea ice dynamics in the polynyas and the variations in the polynya area may indirectly influence the sulfur aerosols in austral spring and summer. In austral winter, the sulfur compounds in the atmosphere are primarily originating in long-range transported by-products from remote regions because nearly no phytoplankton activity occurred in the offshore polynyas.

Corresponding author address: Liqi Chen, Third Institute of Oceanography, State Oceanic Administration, 178 Daxue Road, Xiamen, Fujian 361005, China. E-mail: lqchen@soa.gov.cn

Denotes Chemistry/Aerosol content

Save
  • Arrigo, K. R., and G. L. van Dijken, 2003: Phytoplankton dynamics within 37 Antarctic coastal polynya systems. J. Geophys. Res., 108, 3271, doi:10.1029/2002JC001739.

    • Search Google Scholar
    • Export Citation
  • Arrigo, K. R., D. Worthen, A. Schnell, and M. P. Lizotte, 1998: Primary production in Southern Ocean waters. J. Geophys. Res., 103, 15 58715 600, doi:10.1029/98JC00930.

    • Search Google Scholar
    • Export Citation
  • Arsene, C., I. Barnes, and K. H. Becker, 1999: FT-IR product study of the photo-oxidation of dimethyl sulfide: Temperature and O2 partial pressure dependence. Atmos. Chem. Phys., 1, 54635470, doi:10.1039/A907211J.

    • Search Google Scholar
    • Export Citation
  • Bates, T. S., J. A. Calhoun, and P. K. Quinn, 1992: Variations in the methanesulfonate to sulfate molar ratio in submicrometer marine aerosol particles over the south Pacific Ocean. J. Geophys. Res., 97, 98599865, doi:10.1029/92JD00411.

    • Search Google Scholar
    • Export Citation
  • Belviso, S., C. Moulin, L. Bopp, and J. Stefels, 2004: Assessment of a global climatology of oceanic dimethylsulfide (DMS) concentrations based on SeaWiFS imagery (1998-2001). Can. J. Fish. Aquat. Sci., 61, 804816, doi:10.1139/f04-001.

    • Search Google Scholar
    • Export Citation
  • Berresheim, H., J. W. Huey, R. P. Thorn, F. L. Eisele, D. J. Tanner, and A. Jefferson, 1998: Measurements of dimethyl sulfide, dimethyl sulfoxide, dimethyl sulfone, and aerosol ions at Palmer Station, Antarctica. J. Geophys. Res., 103, 16291637, doi:10.1029/97JD00695.

    • Search Google Scholar
    • Export Citation
  • Boetius, A., and Coauthors, 2013: Export of algal biomass from the melting Arctic sea ice. Science, 339, 14301432, doi:10.1126/science.1231346.

    • Search Google Scholar
    • Export Citation
  • Charlson, R. J., J. E. Lovelock, M. O. Andreaei, and S. G. Warren, 1987: Oceanic phytoplankton, atmospheric sulphur, cloud. Nature, 326, 655661, doi:10.1038/326655a0.

    • Search Google Scholar
    • Export Citation
  • Chen, L., J. Wang, Y. Gao, G. Xu, X. Yang, Q. Lin, and Y. Zhang, 2012: Latitudinal distributions of atmospheric MSA and MSA/nss-SO4 2− ratios in summer over the high latitude regions of the Southern and Northern Hemispheres. J. Geophys. Res., 117, D10306, doi:10.1029/2011JD016559.

    • Search Google Scholar
    • Export Citation
  • De Baar, H. J., J. T. De Jong, D. C. Bakker, B. M. Löscher, C. Veth, U. Bathmann, and V. Smetacek, 1995: Importance of iron for plankton blooms and carbon dioxide drawdown in the Southern Ocean. Nature, 373, 412415, doi:10.1038/373412a0.

    • Search Google Scholar
    • Export Citation
  • Del Valle, D. A., D. J. Kieber, D. A. Toole, J. Brinkley, and R. P. Kiene, 2009: Biological consumption of dimethylsulfide (DMS) and its importance in DMS dynamics in the Ross Sea, Antarctica. Limnol. Oceanogr., 54, 785798, doi:10.4319/lo.2009.54.3.0785.

    • Search Google Scholar
    • Export Citation
  • Eriksson, E., 1959: The yearly circulation of chloride and sulfur in nature; meteorological, geochemical and pedological implications. Part 1. Tellus, 11, 375403, doi:10.1111/j.2153-3490.1959.tb00048.x.

    • Search Google Scholar
    • Export Citation
  • Gabric, A. J., J. M. Shephard, J. M. Knight, G. Jones, and A. J. Trevena, 2005: Correlations between the satellite-derived seasonal cycles of phytoplankton biomass and aerosol optical depth in the Southern Ocean: Evidence for the influence of sea ice. Global Biogeochem. Cycles, 19, GB4018, doi:10.1029/2005GB002546.

    • Search Google Scholar
    • Export Citation
  • Hall, J. S., and E. W. Wolff, 1998: Causes of seasonal and daily variations in aerosol sea-salt concentrations at a coastal Antarctic station. Atmos. Environ., 32, 36693677, doi:10.1016/S1352-2310(98)00090-9.

    • Search Google Scholar
    • Export Citation
  • Hezel, P. J., B. Alexander, C. M. Bitz, E. J. Steig, C. D. Holmes, X. Yang, and J. Sciare, 2011: Modeled methanesulfonic acid (MSA) deposition in Antarctica and its relationship to sea ice. J. Geophys. Res., 116, D23214, doi:10.1029/2011JD016383.

    • Search Google Scholar
    • Export Citation
  • Ho, D. T., C. S. Law, M. J. Smith, P. Schlosser, M. Harvey, and P. Hill, 2006: Measurements of air-sea gas exchange at high wind speeds in the Southern Ocean: Implications for global parameterizations. Geophys. Res. Lett., 33, L16611, doi:10.1029/2006GL026817.

    • Search Google Scholar
    • Export Citation
  • Kettle, A., and Coauthors, 1999: A global database of sea surface dimethylsulfide (DMS) measurements and a procedure to predict sea surface DMS as a function of latitude, longitude, and month. Global Biogeochem. Cycles, 13, 399444, doi:10.1029/1999GB900004.

    • Search Google Scholar
    • Export Citation
  • Kiene, R. P., D. J. Kieber, D. Slezak, D. A. Toole, D. A. del Valle, J. Bisgrove, J. Brinkley, and A. Rellinger, 2007: Distribution and cycling of dimethylsulfide, dimethylsulfoniopropionate, and dimethylsulfoxide during spring and early summer in the Southern Ocean south of New Zealand. Aquat. Sci., 69, 305319, doi:10.1007/s00027-007-0892-3.

    • Search Google Scholar
    • Export Citation
  • Kloster, S., J. Feichter, E. Maier-Reimer, K. D. Six, P. Stier, and P. Wetzel, 2006: DMS cycle in the marine ocean-atmosphere system—A global model study. Biogeosciences, 3, 2951, doi:10.5194/bg-3-29-2006.

    • Search Google Scholar
    • Export Citation
  • Lana, A., and Coauthors, 2011: An updated climatology of surface dimethlysulfide concentrations and emission fluxes in the global ocean. Global Biogeochem. Cycles, 25, GB1004, doi:10.1029/2010GB003850.

    • Search Google Scholar
    • Export Citation
  • Lana, A., R. Simó, S. M. Vallina, and J. Dachs, 2012: Potential for a biogenic influence on cloud microphysics over the ocean: A correlation study with satellite-derived data. Atmos. Chem. Phys., 12, 79777993, doi:10.5194/acp-12-7977-2012.

    • Search Google Scholar
    • Export Citation
  • Legrand, M., and E. C. Pasteur, 1998: Methane sulfonic acid to non-sea-salt sulfate ratio in coastal Antarctic aerosol and surface snow. J. Geophys. Res., 103, 10 99111 006, doi:10.1029/98JD00929.

    • Search Google Scholar
    • Export Citation
  • Legrand, M., J. Sciare, B. Jourdain, and C. Genthon, 2001: Subdaily variations of atmospheric dimethylsulfide, dimethylsulfoxide, methanesulfonate, and non-sea-salt sulfate aerosols in the atmospheric boundary layer at Dumont d’Urville (coastal Antarctica) during summer. J. Geophys. Res., 106, 14 40914 422, doi:10.1029/2000JD900840.

    • Search Google Scholar
    • Export Citation
  • Lizotte, M. P., 2001: The contributions of sea ice algae to Antarctic marine primary production. Amer. Zool., 41, 5773, doi:10.1668/0003-1569(2001)041[0057:TCOSIA]2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Loose, B., L. A. Miller, S. Elliott, and T. Papakyriakou, 2011: Sea ice biogeochemistry and material transport across the frozen interface. Oceanography, 24, 202218, doi:10.5670/oceanog.2011.72.

    • Search Google Scholar
    • Export Citation
  • Massom, R., P. Harris, K. J. Michael, and M. Potter, 1998: The distribution and formative processes of latent-heat polynyas in East Antarctica. Ann. Glaciol., 27, 420426.

    • Search Google Scholar
    • Export Citation
  • Minikin, A., D. Wagenbach, V. Graf, and J. Kipfstuhl, 1994: Spatial and seasonal variations of the snow chemistry at the central Filchner-Ronne Ice Shelf, Antarctica. Ann. Glaciol., 20, 283290, doi:10.3189/172756494794587627.

    • Search Google Scholar
    • Export Citation
  • Minikin, A., M. Legrand, J. Hall, D. Wagenbach, C. Kleefeld, E. Wolff, E. C. Pasteur, and F. Ducroz, 1998: Sulfur-containing species (sulfate and methanesulfonate) in coastal Antarctic aerosol and precipitation. J. Geophys. Res., 103, 10 97510 990, doi:10.1029/98JD00249.

    • Search Google Scholar
    • Export Citation
  • Mulvaney, R., and E. Wolff, 1994: Spatial variability of the major chemistry of the Antarctic ice sheet. Ann. Glaciol., 20, 440447, doi:10.3189/172756494794587159.

    • Search Google Scholar
    • Export Citation
  • Park, K.-T., and Coauthors, 2013: Linking atmospheric dimethyl sulfide and the Arctic Ocean spring bloom. Geophys. Res. Lett., 40, 155160, doi:10.1029/2012GL054560.

    • Search Google Scholar
    • Export Citation
  • Preunkert, S., M. Legrand, B. Jourdain, C. Moulin, S. Belviso, N. Kasamatsu, M. Fukuchi, and T. Hirawake, 2007: Interannual variability of dimethylsulfide in air and seawater and its atmospheric oxidation by-products (methanesulfonate and sulfate) at Dumont d’Urville, coastal Antarctica (1999–2003). J. Geophys. Res., 112, D06306, doi:10.1029/2006JD007585.

    • Search Google Scholar
    • Export Citation
  • Preunkert, S., B. Jourdain, M. Legrand, R. Udisti, S. Becagli, and O. Cerri, 2008: Seasonality of sulfur species (dimethyl sulfide, sulfate, and methanesulfonate) in Antarctica: Inland versus coastal regions. J. Geophys. Res., 113, D15302, doi:10.1029/2008JD009937.

    • Search Google Scholar
    • Export Citation
  • Rankin, A. M., V. Auld, and E. W. Wolff, 2000: Frost flowers as a source of fractionated sea salt aerosol in the polar regions. Geophys. Res. Lett., 27, 34693472, doi:10.1029/2000GL011771.

    • Search Google Scholar
    • Export Citation
  • Read, K., and Coauthors, 2008: DMS and MSA measurements in the Antarctic Boundary Layer: Impact of BrO on MSA production. Atmos. Chem. Phys., 8, 29852997, doi:10.5194/acp-8-2985-2008.

    • Search Google Scholar
    • Export Citation
  • Saltzman, E. S., 2009: Marine aerosols. Surface Ocean–Lower Atmosphere Processes, Geophys. Monogr., Vol. 187, Amer. Geophys. Union, 17–35.

  • Sciare, J., N. Mihalopoulos, and F. Dentener, 2000: Interannual variability of atmospheric dimethylsulfide in the southern Indian Ocean. Atmos. Chem. Phys., 105, 26 36926 377, doi:10.1029/2000JD900236.

    • Search Google Scholar
    • Export Citation
  • Simó, R., 2001: Production of atmospheric sulfur by oceanic plankton: Biogeochemical, ecological and evolutionary links. Trends Ecol. Evol., 16, 287294, doi:10.1016/S0169-5347(01)02152-8.

    • Search Google Scholar
    • Export Citation
  • Smith, W. O., and J. C. Comiso, 2008: Influence of sea ice on primary production in the Southern Ocean: A satellite perspective. J. Geophys. Res., 113, C05S93, doi:10.1029/2007JC004251.

    • Search Google Scholar
    • Export Citation
  • Spreen, G., L. Kaleschke, and G. Heygster, 2008: Sea ice remote sensing using AMSR-E 89-GHz channels. J. Geophys. Res., 113, C02S03, doi:10.1029/2005JC003384.

    • Search Google Scholar
    • Export Citation
  • Stabeno, P., J. Napp, C. Mordy, and T. Whitledge, 2010: Factors influencing physical structure and lower trophic levels of the eastern Bering Sea shelf in 2005: Sea ice, tides and winds. Prog. Oceanogr., 85, 180196, doi:10.1016/j.pocean.2010.02.010.

    • Search Google Scholar
    • Export Citation
  • Stefels, J., M. Steinke, S. Turner, G. Malin, and S. Belviso, 2007: Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling. Biogeochemistry, 83, 245275, doi:10.1007/s10533-007-9091-5.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., J. Olafsson, J. G. Goddard, D. W. Chipman, and S. C. Sutherland, 1993: Seasonal variation of CO2 and nutrients in the high-latitude surface oceans: A comparative study. Global Biogeochem. Cycles, 7, 843878, doi:10.1029/93GB02263.

    • Search Google Scholar
    • Export Citation
  • Taylor, M. H., M. Losch, and A. Bracher, 2013: On the drivers of phytoplankton blooms in the Antarctic marginal ice zone: A modeling approach. J. Geophys. Res. Oceans, 118, 6375, doi:10.1029/2012JC008418.

    • Search Google Scholar
    • Export Citation
  • Tortell, P. D., and M. C. Long, 2009: Spatial and temporal variability of biogenic gases during the Southern Ocean spring bloom. Geophys. Res. Lett., 36, L01603, doi:10.1029/2008GL035819.

    • Search Google Scholar
    • Export Citation
  • Tortell, P. D., C. Guéguen, M. C. Long, C. D. Payne, P. Lee, and G. R. DiTullio, 2011: Spatial variability and temporal dynamics of surface water pCO2, ΔO2/Ar and dimethylsulfide in the Ross Sea, Antarctica. Deep-Sea Res. I, 58, 241259, doi:10.1016/j.dsr.2010.12.006.

    • Search Google Scholar
    • Export Citation
  • Tortell, P. D., M. C. Long, C. D. Payne, A. C. Alderkamp, P. Dutrieux, and K. R. Arrigo, 2012: Spatial distribution of pCO2, ΔO2/Ar and dimethylsulfide (DMS) in polynya waters and the sea ice zone of the Amundsen Sea, Antarctica. Deep-Sea Res. II, 71–76, 7793, doi:10.1016/j.dsr2.2012.03.010.

    • Search Google Scholar
    • Export Citation
  • Von Glasow, R., and P. Crutzen, 2004: Model study of multiphase DMS oxidation with a focus on halogens. Atmos. Chem. Phys., 4, 589608, doi:10.5194/acp-4-589-2004.

    • Search Google Scholar
    • Export Citation
  • Wagenbach, D., F. Ducroz, R. Mulvaney, L. Keck, A. Minikin, M. Legrand, J. S. Hall, and E. W. Wolff, 1998: Sea-salt aerosol in coastal Antarctic regions. J. Geophys. Res., 103, 10 96110 974, doi:10.1029/97JD01804.

    • Search Google Scholar
    • Export Citation
  • Wang, S., D. Bailey, K. Lindsay, J. K. Moore, and M. Holland, 2014: Impact of sea ice on the marine iron cycle and phytoplankton productivity. Biogeosciences, 11, 47134731, doi:10.5194/bg-11-4713-2014.

    • Search Google Scholar
    • Export Citation
  • Wanninkhof, R., 1992: Relationship between wind speed and gas exchange. J. Geophys. Res., 97, 73737382, doi:10.1029/92JC00188.

  • Xu, G., and Y. Gao, 2015: Characterization of marine aerosols and precipitation through shipboard observations on the transect between 31°N–32°S in the West Pacific. Atmos. Pollut. Res., 6, 154161, doi:10.5094/APR.2015.018.

    • Search Google Scholar
    • Export Citation
  • Xu, G., Y. Gao, Q. Lin, W. Li, and L. Chen, 2013: Characteristics of water-soluble inorganic and organic ions in aerosols over the Southern Ocean and coastal East Antarctica during austral summer. J. Geophys. Res. Atmos., 118, 13 30313 318, doi:10.1002/2013JD019496.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 432 86 9
PDF Downloads 523 46 1