Offshore Propagation of Coastal Precipitation

Yanping Li University of Saskatchewan, Saskatoon, Saskatchewan, Canada

Search for other papers by Yanping Li in
Current site
Google Scholar
PubMed
Close
and
R. E. Carbone National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by R. E. Carbone in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This work focuses on the seaward propagation of coastal precipitation with and without mountainous terrain nearby. Offshore of India, diurnal propagation of precipitation is observed over the Bay of Bengal. On the eastern side of the bay, a diurnal but nonpropagating signal is observed near the west coast of Burma. This asymmetry is consistent with the inertio-gravity wave mechanism. Perturbations generated by diurnal heating over the coastal mountains of India propagate offshore, amplify in the upwind direction, and dissipate in the downwind direction relative to the steering wind, owing to critical-level considerations. A linear model is applied to evaluate sensitivity to gravity waves, as these affect deep moist convection and propagation. Analyses are performed for various heating depths, mountain widths, stability, Coriolis effect, background mean wind, and friction. Calculations reveal how these factors affect the amplitude, dissipation, initiation phase, and propagation speed of the diurnal disturbance. The propagation of precipitation triggered by land–sea breezes is distinguishable from that triggered by a mountain–plains circulation. Convection resulting purely from mountain heating begins earlier, propagates slower, and damps faster than that of the land–sea breeze. For mountains near a coast, slower propagation and stronger earlier convection result from a resonance-like combination of two dynamical mechanisms. The propagation of precipitation is initially triggered by the mountain breeze near the coastal mountain. Over the open ocean, the dominant signal propagates as that of the land breeze but with stronger convection.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Yanping Li, Global Institute for Water Security, University of Saskatchewan, 11 Innovation Blvd., Saskatoon SK S7N 3H5, Canada. E-mail: yanping.li@usask.ca

Abstract

This work focuses on the seaward propagation of coastal precipitation with and without mountainous terrain nearby. Offshore of India, diurnal propagation of precipitation is observed over the Bay of Bengal. On the eastern side of the bay, a diurnal but nonpropagating signal is observed near the west coast of Burma. This asymmetry is consistent with the inertio-gravity wave mechanism. Perturbations generated by diurnal heating over the coastal mountains of India propagate offshore, amplify in the upwind direction, and dissipate in the downwind direction relative to the steering wind, owing to critical-level considerations. A linear model is applied to evaluate sensitivity to gravity waves, as these affect deep moist convection and propagation. Analyses are performed for various heating depths, mountain widths, stability, Coriolis effect, background mean wind, and friction. Calculations reveal how these factors affect the amplitude, dissipation, initiation phase, and propagation speed of the diurnal disturbance. The propagation of precipitation triggered by land–sea breezes is distinguishable from that triggered by a mountain–plains circulation. Convection resulting purely from mountain heating begins earlier, propagates slower, and damps faster than that of the land–sea breeze. For mountains near a coast, slower propagation and stronger earlier convection result from a resonance-like combination of two dynamical mechanisms. The propagation of precipitation is initially triggered by the mountain breeze near the coastal mountain. Over the open ocean, the dominant signal propagates as that of the land breeze but with stronger convection.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Yanping Li, Global Institute for Water Security, University of Saskatchewan, 11 Innovation Blvd., Saskatoon SK S7N 3H5, Canada. E-mail: yanping.li@usask.ca
Save
  • Abbs, D. J., 1986: Sea-breeze interactions along a concave coastline in southern Australia: Observations and numerical modeling study. Mon. Wea. Rev., 114, 831848, doi:10.1175/1520-0493(1986)114<0831:SBIAAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Abbs, D. J., and W. L. Physick, 1992: Sea-breeze observations and modeling: A review. Aust. Meteor. Mag., 41, 719.

  • Asai, T., and S. Mitsumoto, 1978: Effects of an inclined land surface on the land and sea breeze circulation: A numerical experiment. J. Meteor. Soc. Japan, 56, 559570.

    • Search Google Scholar
    • Export Citation
  • Banta, B., 1986: Daytime boundary layer evolution over mountainous terrain. Part II: Numerical study of upslope flow duration. Mon. Wea. Rev., 114, 11121130, doi:10.1175/1520-0493(1986)114<1112:DBLEOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Biasutti, M., S. E. Yuter, C. D. Burleyson, and A. H. Sobel, 2012: Very high resolution rainfall patterns measured by TRMM precipitation radar: Seasonal and diurnal cycles. Climate Dyn., 39, 239258, doi:10.1007/s00382-011-1146-6.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., and Y. Li, 2015: Tropical oceanic rainfall and sea surface temperature structure: Parsing causation from correlation in the MJO. J. Atmos. Sci., 72, 27032718, doi:10.1175/JAS-D-14-0226.1.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., J. W. Wilson, T. D. Keenan, and J. M. Hacker, 2000: Tropical island convection in the absence of significant topography. Part I: Life cycle of diurnally forced convection. Mon. Wea. Rev., 128, 34593480, doi:10.1175/1520-0493(2000)128<3459:TICITA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., J. D. Tuttle, D. A. Ahijevych, and S. B. Trier, 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59, 20332056, doi:10.1175/1520-0469(2002)059<2033:IOPAWW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Crook, N. A., 1988: Trapping of low-level internal gravity waves. J. Atmos. Sci., 45, 15331541, doi:10.1175/1520-0469(1988)045<1533:TOLLIG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Crosman, E. T., and J. D. Horel, 2010: Sea and lake breezes: A review of numerical studies. Bound.-Layer Meteor., 137, 129, doi:10.1007/s10546-010-9517-9.

    • Search Google Scholar
    • Export Citation
  • Grossman, R. L., and D. R. Durran, 1984: Interaction of low-level flow with the Western Ghat mountains and offshore convection in the summer monsoon. Mon. Wea. Rev., 112, 652672, doi:10.1175/1520-0493(1984)112<0652:IOLLFW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2012: Orographic effects on precipitating clouds. Rev. Geophys., 50, RG1001, doi:10.1029/2011RG000365.

  • Jiang, Q., 2012: On offshore propagating diurnal waves. J. Atmos. Sci., 69, 15621581, doi:10.1175/JAS-D-11-0220.1.

  • Johnson, R. H., 2011: Diurnal cycle of monsoon convection. The Global Monsoon System: Research and Forecasts, 2nd ed. C.-P. Chang et al., Eds., World Scientific Publishing Company, 257–276.

  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, doi:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Keenan, T. D., and R. E. Carbone, 2008: Propagation and diurnal evolution of warm season cloudiness in the Australian and Maritime Continent region. Mon. Wea. Rev., 136, 973994, doi:10.1175/2007MWR2152.1.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., and B. Wang, 2008: Diurnal precipitation regimes in the global tropics. J. Climate, 21, 26802696, doi:10.1175/2007JCLI2051.1.

    • Search Google Scholar
    • Export Citation
  • Laing, A. G., R. E. Carbone, V. Levizzani, and J. D. Tuttle, 2008: The propagation and diurnal cycles of deep convection in northern tropical Africa. Quart. J. Roy. Meteor. Soc., 134, 93109, doi:10.1002/qj.194.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J., D. Ahijevych, S. W. Nesbitt, R. Carbone, S. A. Rutledge, and R. Cifelli, 2007: Radar-observed characteristics of precipitating systems during NAME 2004. J. Climate, 20, 17131733, doi:10.1175/JCLI4082.1.

    • Search Google Scholar
    • Export Citation
  • Levizzani, V., R. Ginnetti, A. G. Laing, and R. E. Carbone, 2006: Warm season precipitation climatology: First European results. Adv. Geosci., 7, 1518, doi:10.5194/adgeo-7-15-2006.

    • Search Google Scholar
    • Export Citation
  • Li, Y., 2009: Diurnal thermal circulation on two scales: Valley and continental. Ph.D. thesis, Yale University, 215 pp.

  • Li, Y., and R. B. Smith, 2010a: Observation and theory of the diurnal continental tide. J. Atmos. Sci., 67, 27522765, doi:10.1175/2010JAS3384.1.

    • Search Google Scholar
    • Export Citation
  • Li, Y., and R. B. Smith, 2010b: The detection and significance of diurnal pressure and potential vorticity anomalies east of the Rockies. J. Atmos. Sci., 67, 27342751, doi:10.1175/2010JAS3423.1.

    • Search Google Scholar
    • Export Citation
  • Li, Y., R. B. Smith, and V. Grubišić, 2009: Using surface pressure variations to categorize diurnal valley circulations: Experiments in Owens Valley. Mon. Wea. Rev., 137, 17531769, doi:10.1175/2008MWR2495.1.

    • Search Google Scholar
    • Export Citation
  • Mahrer, Y., and R. A. Pielke, 1977: The effects of topography on sea and land breezes in a two-dimensional numerical model. Mon. Wea. Rev., 105, 11511162, doi:10.1175/1520-0493(1977)105<1151:TEOTOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., T. T. Warner, M. Xu, and J. Negri, 2003a: Diurnal patterns of rainfall in northwestern South America. Part I: Observations and context. Mon. Wea. Rev., 131, 799812, doi:10.1175/1520-0493(2003)131<0799:DPORIN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., T. T. Warner, and M. Xu, 2003b: Diurnal patterns of rainfall in northwestern South America. Part III: Diurnal gravity waves and nocturnal convection offshore. Mon. Wea. Rev., 131, 830844, doi:10.1175/1520-0493(2003)131<0830:DPORIN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Muñoz, R. C., 2008: Diurnal cycle of surface winds over the subtropical southeast Pacific. J. Geophys. Res., 113, D13107, doi:10.1029/2008JD009957.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., and E. J. Zipser, 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16, 14561475, doi:10.1175/1520-0442-16.10.1456.

    • Search Google Scholar
    • Export Citation
  • Neumann, J., and H. Savijarvi, 1986: The sea breeze on a steep coast. Beitr. Phys. Atmos., 59, 375389.

  • Ookouchi, Y., M. Uryu, and R. Sawada, 1978: A numerical study of the effects of a mountain on the land and sea breeze. J. Meteor. Soc. Japan, 56, 368386.

    • Search Google Scholar
    • Export Citation
  • Pereira Filho, A. J., R. E. Carbone, J. E. Janowiak, P. Arkin, R. Joyce, R. Hallak, and C. G. M. Ramos, 2010: Satellite rainfall estimates over South America—Possible applicability to the water management of large watersheds. J. Amer. Water Resour. Assoc., 46, 344360, doi:10.1111/j.1752-1688.2009.00406.x.

    • Search Google Scholar
    • Export Citation
  • Porson, A., D. G. Steyn, and G. Schayes, 2007: Sea breeze scaling from numerical model simulations. Part II: Interactions between the sea breeze and slope flows. Bound.-Layer Meteor., 122, 3141, doi:10.1007/s10546-006-9092-2.

    • Search Google Scholar
    • Export Citation
  • Qian, T., C. Epifanio, and F. Zhang, 2009: Linear theory calculations for the sea breeze in a background wind: The equatorial case. J. Atmos. Sci., 66, 17491763, doi:10.1175/2008JAS2851.1.

    • Search Google Scholar
    • Export Citation
  • Robinson, F. J., S. C. Sherwood, and Y. Li, 2008: Resonant response of deep convection to surface hot spots. J. Atmos. Sci., 65, 276286, doi:10.1175/2007JAS2398.1.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., 1983: On the linear theory of the land and sea breeze. J. Atmos. Sci., 40, 19992009, doi:10.1175/1520-0469(1983)040<1999:OTLTOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, doi:10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Segal, M., Y. Mahrer, and R. A. Pielke, 1983: A study of meteorological patterns associated with a lake confined by mountains—the Dead Sea case. Quart. J. Roy. Meteor. Soc., 109, 549564, doi: 10.1002/qj.49710946107.

    • Search Google Scholar
    • Export Citation
  • Segal, M., M. Leuthold, R. W. Arritt, C. Anderson, and J. Shen, 1997: Small lake daytime breezes: Some observational and conceptual evaluations. Bull. Amer. Meteor. Soc., 78, 11351147, doi:10.1175/1520-0477(1997)078<1135:SLDBSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., and Y.-L. Lin, 1982: The addition of heat to a stratified airstream with application to the dynamics of orographic rain. Quart. J. Roy. Meteor. Soc., 108, 353378, doi:10.1002/qj.49710845605.

    • Search Google Scholar
    • Export Citation
  • Steyn, D. G., 2003: Scaling the vertical structure of sea breezes revisited. Bound.-Layer Meteor., 107, 177188, doi:10.1023/A:1021568117280.

    • Search Google Scholar
    • Export Citation
  • Wang, C.-C., G. T.-J. Chen, and R. E. Carbone, 2004: A climatology of warm season cloud patterns over East Asia based on GMS infrared brightness temperature observations. Mon. Wea. Rev., 132, 16061629, doi:10.1175/1520-0493(2004)132<1606:ACOWCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and Coauthors, 2002: The JASMINE pilot study. Bull. Amer. Meteor. Soc., 83, 16031630, doi:10.1175/BAMS-83-11-1603.

  • Xie, S.-P., H. Xu, N. H. Saji, Y. Wang, and W. T. Liu, 2006: Role of narrow mountains in large-scale organization of Asian monsoon convection. J. Climate, 19, 34203429, doi:10.1175/JCLI3777.1.

    • Search Google Scholar
    • Export Citation
  • Yang, G. Y., and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129, 784801, doi:10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 654 275 9
PDF Downloads 371 102 11