Interhemispheric Variability of Earth’s Radiation

Alexander Ruzmaikin Jet Propulsion Laboratory, Pasadena, California

Search for other papers by Alexander Ruzmaikin in
Current site
Google Scholar
PubMed
Close
,
Hartmut H. Aumann Jet Propulsion Laboratory, Pasadena, California

Search for other papers by Hartmut H. Aumann in
Current site
Google Scholar
PubMed
Close
, and
Jonathan H. Jiang Jet Propulsion Laboratory, Pasadena, California

Search for other papers by Jonathan H. Jiang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The variability of interhemispheric symmetry of Earth’s energy serves as an independent indicator of climate change. The analysis of updated data obtained from satellite measurements at the top of the atmosphere (TOA) shows that in accord with Earth’s orbital requirements the annually averaged incident solar radiation is the same in the Northern and Southern Hemispheres, the annual mean of the reflected shortwave radiation is almost north–south symmetric, and the annual mean of the outgoing longwave radiation is larger in the Northern Hemisphere by 1.4 W m−2. These mean radiations systematically differ from the mean radiations found from the numerical atmospheric models that participated in the Coupled Model Intercomparison Project phase 5 (CMIP5). The hemispheric differences of the TOA radiations vary on the annual and interannual time scales. The multidecadal variability in Earth’s north–south temperature difference reveals a similarity of trends in both hemispheres. The Atlantic meridional transport (in contrast to the Pacific meridional transport) is found to be coherent with the interhemispheric ocean heat content (OHC) difference on decadal and multidecadal time scales, indicating a critical role of the Atlantic in the interhemispheric energy balance change.

Corresponding author address: Alexander Ruzmaikin, Mail Stop 169-506, Jet Propulsion Laboratory, 4800 Oak Grove Dr., Pasadena, CA 91109. E-mail: alexander.ruzmaikin@jpl.nasa.gov

Abstract

The variability of interhemispheric symmetry of Earth’s energy serves as an independent indicator of climate change. The analysis of updated data obtained from satellite measurements at the top of the atmosphere (TOA) shows that in accord with Earth’s orbital requirements the annually averaged incident solar radiation is the same in the Northern and Southern Hemispheres, the annual mean of the reflected shortwave radiation is almost north–south symmetric, and the annual mean of the outgoing longwave radiation is larger in the Northern Hemisphere by 1.4 W m−2. These mean radiations systematically differ from the mean radiations found from the numerical atmospheric models that participated in the Coupled Model Intercomparison Project phase 5 (CMIP5). The hemispheric differences of the TOA radiations vary on the annual and interannual time scales. The multidecadal variability in Earth’s north–south temperature difference reveals a similarity of trends in both hemispheres. The Atlantic meridional transport (in contrast to the Pacific meridional transport) is found to be coherent with the interhemispheric ocean heat content (OHC) difference on decadal and multidecadal time scales, indicating a critical role of the Atlantic in the interhemispheric energy balance change.

Corresponding author address: Alexander Ruzmaikin, Mail Stop 169-506, Jet Propulsion Laboratory, 4800 Oak Grove Dr., Pasadena, CA 91109. E-mail: alexander.ruzmaikin@jpl.nasa.gov
Save
  • Allan, R. P., C. Liu, N. G. Loeb, M. D. Palmer, M. Roberts, D. Smith, and P.-L. Vidale, 2014: Changes in global net radiative imbalance 1985–2012. Geophys. Res. Lett., 41, 55885597, doi:10.1002/2014GL060962.

    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., K. Mogensen, and A. T. Weaver, 2013: Evaluation of the ECMWF ocean reanalysis system ORAS4. Quart. J. Roy. Meteor. Soc., 139, 11321161, doi:10.1002/qj.2063.

    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., K. E. Trenberth, and E. Källén, 2014: Distinctive climate signals in reanalysis of global ocean heat content. Geophys. Res. Lett., 40, 17541759, doi:10.1002/grl.50382.

    • Search Google Scholar
    • Export Citation
  • Block, K., and T. Mauritsen, 2013: Forcing and feedback in the MPI-ESM-LR coupled model under abruptly quadrupled CO2. J. Adv. Model. Earth Syst., 5, 676691, doi:10.1002/jame.20041.

    • Search Google Scholar
    • Export Citation
  • Chen, X., and K.-K. Tung, 2014: Varying planetary heat sink led to global-warming slowdown and acceleration. Science, 345, 897903, doi:10.1126/science.1254937.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Climate, 17, 41434158, doi:10.1175/JCLI4953.1.

    • Search Google Scholar
    • Export Citation
  • Collins, W. J., and Coauthors, 2008: Evaluation of the HadGEM2 model. Met Office Hadley Centre Tech. Note 74, 47 pp. [Available from Met Office, FitzRoy Road, Exeter EX1 3PB, United Kingdom.]

  • Croll, J., 1870: On ocean-currents, part I: Ocean-currents in relation to the distribution of heat over the globe. Philos. Mag. J. Sci., 39 (259), 81106.

    • Search Google Scholar
    • Export Citation
  • Donner, L. J., and Coauthors, 2011: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL Global Coupled Model CM3. J. Climate, 24, 34843519, doi:10.1175/2011JCLI3955.1.

    • Search Google Scholar
    • Export Citation
  • Drost, F., and D. Karoly, 2012: Evaluating global climate responses to different forcings using simple indices. Geophys. Res. Lett., 39, L16701, doi:10.1029/2012GL052667.

    • Search Google Scholar
    • Export Citation
  • Dufresne, J.-L., and Coauthors, 2013: Climate change projections using the IPSL-CM5 Earth System Model: From CMIP3 to CMIP5. Climate Dyn., 40, 21232165, doi:10.1007/s00382-012-1636-1.

    • Search Google Scholar
    • Export Citation
  • Feulner, G., S. Rahmstorf, A. Levermann, and S. Volkwardt, 2013: On the origin of the surface air temperature difference between the hemispheres in Earth’s present-day climate. J. Climate, 26, 71367150, doi:10.1175/JCLI-D-12-00636.1.

    • Search Google Scholar
    • Export Citation
  • Friedman, A. R., Y.-T. Hwang, J. C. H. Chiang, and D. M. W. Frierson, 2013: Interhemispheric temperature asymmetry over the twentieth century and in future projections. J. Climate, 26, 54195433, doi:10.1175/JCLI-D-12-00525.1.

    • Search Google Scholar
    • Export Citation
  • Hourdin, F., and Coauthors, 2013: LMDZ5B: The atmospheric component of the IPSL climate model with revisited parameterizations for clouds and convection. Climate Dyn., 40, 21932222, doi:10.1007/s00382-012-1343-y.

    • Search Google Scholar
    • Export Citation
  • Hwang, Y.-T., and D. M. W. Frierson, 2013: Link between the double-Intertropical Convergence Zone problem and cloud biases over the Southern Ocean. Proc. Natl. Acad. Sci. USA, 110, 49354940, doi:10.1073/pnas.1213302110.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp.

  • Jiang, J. H., and Coauthors, 2012: Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA A-Train satellite observations. J. Geophys. Res., 117, D14105, doi:10.1029/2011JD017237.

    • Search Google Scholar
    • Export Citation
  • Journee, M., and C. Bertrand, 2011: Quality control of solar radiation data within the RMIB solar measurements network. Sol. Energy, 85, 7286, doi:10.1016/j.solener.2010.10.021.

    • Search Google Scholar
    • Export Citation
  • Kang, S. M., R. Seager, D. M. W. Frierson, and X. Liu, 2014: Croll revisited: Why is the northern hemisphere warmed than the southern hemisphere? Climate Dyn., 44, 14571472, doi:10.1007/s00382-014-2147-z.

    • Search Google Scholar
    • Export Citation
  • Karl, T. R., and Coauthors, 2015: Possible artifacts of data biases in the recent global surface warming hiatus. Science, 348, 14691472, doi:10.1126/science.aaa5632.

    • Search Google Scholar
    • Export Citation
  • Kopp, G., 2014: An assessment of the solar irradiance record for climate studies. J. Space Wea. Space Climate, 4, 17061710, doi:10.1051/swsc/2014012.

    • Search Google Scholar
    • Export Citation
  • Kopp, G., and J. L. Lean, 2011: A new, lower value of total solar irradiance: Evidence and climate significance. Geophys. Res. Lett., 38, L01706, doi:10.1029/2010GL045777.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., K. J. Priestley, D. P. Kratz, E. B. Geier, R. N. Green, B. A. Wielicki, P. O. R. Hinton, and S. K. Nolan, 2001: Determination of unfiltered radiances from the Clouds and the Earth’s Radiant Energy System (CERES) instrument. J. Appl. Meteor., 40, 822835, doi:10.1175/1520-0450(2001)040<0822:DOURFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., B. A. Wielicki, D. R. Doelling, G. L. Smith, D. F. Keyes, S. Kato, N. Manalo-Smith, and T. Wong, 2009: Toward optimal closure of the earth’s top-of-atmosphere radiation budget. J. Climate, 22, 748766, doi:10.1175/2008JCLI2637.1.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., J. M. Lyman, G. C. Johnson, R. P. Allan, D. R. Doelling, T. Wong, B. J. Soden, and G. L. Stephens, 2012: Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty. Nat. Geosci., 5, 110113, doi:10.1038/ngeo1375.

    • Search Google Scholar
    • Export Citation
  • Loutre, M.-F., D. Paillard, F. Vimeux, and E. Cortijo, 2004: Does mean annual insolation have the potential to change the climate? Earth Planet. Sci. Lett., 221, 114, doi:10.1016/S0012-821X(04)00108-6.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Donohoe, D. Ferreira, and D. McGee, 2014: The ocean’s role in setting the mean position of the Inter-Tropical Convergence Zone. Climate Dyn., 42, 19671979, doi:10.1007/s00382-013-1767-z.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., A. Hu, J. M. Arblaster, J. Fasullo, and K. E. Trenberth, 2013: Externally forced and internally generated decadal climate variability associated with the interdecadal Pacific oscillation. J. Climate, 26, 72987310, doi:10.1175/JCLI-D-12-00548.1.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., D. Gu, D. Halpern, G. Lambert, N.-C. Lau, T. Li, and R. C. Pacanowski, 1996: Why the ITCZ is mostly north of the equator. J. Climate, 9, 29582972, doi:10.1175/1520-0442(1996)009<2958:WTIIMN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., J. E. Box, G. Feulner, M. E. Mann, A. Robinson, S. Rutherford, and E. J. Schaffernicht, 2015: Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nature Climate Change, 5, 475480, doi:10.1038/nclimate2554.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., and Coauthors, 2015: Earth’s energy imbalance since 1960 in observations and CMIP5 models. Geophys. Res. Lett., 42, 12051213, doi:10.1002/2014GL062669.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2012: An update on Earth’s energy balance in light of the latest global observations. Nat. Geosci., 5, 691696, doi:10.1038/NGEO1580.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., D. O’Brien, P. J. Webster, P. Pilewski, S. Kato, and J.-l. Li, 2015: The albedo of Earth. Rev. Geophys., 53, 141163, doi:10.1002/2014RG000449.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Souffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. T. Fasulo, 2008: An observational estimate of inferred ocean energy divergence. J. Phys. Oceanogr., 38, 984999, doi:10.1175/2007JPO3833.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and M. A. Balmaseda, 2014: Earth’s energy imbalance. J. Climate, 27, 31293144, doi:10.1175/JCLI-D-13-00294.1.

    • Search Google Scholar
    • Export Citation
  • Voigt, A., B. Stevens, J. Bader, and T. Mauritsen, 2013: The observed hemispheric symmetry in reflected shortwave irradiance. J. Climate, 26, 468477, doi:10.1175/JCLI-D-12-00132.1.

    • Search Google Scholar
    • Export Citation
  • von Salzen, K., and Coauthors, 2013: The Canadian Fourth Generation Atmospheric Global Climate Model (CanAM4). Part I: Representation of physical processes. Atmos.–Ocean, 51, 104125, doi:10.1080/07055900.2012.755610.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and R. C. J. Somerville, 1994: Preferred latitudes of the intertropical convergence zone. J. Atmos. Sci., 51, 16191639, doi:10.1175/1520-0469(1994)051<1619:PLOTIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., Y. Zhang, and J. A. Renwick, 1995: Dynamic contribution to hemispheric mean temperature trends. Science, 270, 780783, doi:10.1126/science.270.5237.780.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and Coauthors, 2010: Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. J. Climate, 23, 63126335, doi:10.1175/2010JCLI3679.1.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., and N. E. Huang, 2009: Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal., 1, 141, doi:10.1142/S1793536909000047.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., N. E. Huang, J. M. Wallace, B. Smoliak, and X. Chen, 2011: On the time-varying trend in global-mean surface temperature. Climate Dyn., 37, 759773, doi:10.1007/s00382-011-1128-8.

    • Search Google Scholar
    • Export Citation
  • Xu, Y., and V. Ramanathan, 2012: Latitudinally asymmetric response of global surface temperature: Implications for regional climate change. Geophys. Res. Lett., 39, L13706, doi:10.1029/2012GL052116.

    • Search Google Scholar
    • Export Citation
  • Yukimoto, S., and Coauthors, 2012: A new global climate model of Meteorological Research Institute: MRI-CGCM3—Model description and basic performance. J. Meteor. Soc. Japan, 90A, 2364, doi:10.2151/jmsj.2012-A02.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 318 85 7
PDF Downloads 186 61 2