A Spatiotemporal Stochastic Model for Tropical Precipitation and Water Vapor Dynamics

Scott Hottovy Department of Mathematics, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Scott Hottovy in
Current site
Google Scholar
PubMed
Close
and
Samuel N. Stechmann Department of Mathematics, and Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Samuel N. Stechmann in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A linear stochastic model is presented for the dynamics of water vapor and tropical convection. Despite its linear formulation, the model reproduces a wide variety of observational statistics from disparate perspectives, including (i) a cloud cluster area distribution with an approximate power law; (ii) a power spectrum of spatiotemporal red noise, as in the “background spectrum” of tropical convection; and (iii) a suite of statistics that resemble the statistical physics concepts of critical phenomena and phase transitions. The physical processes of the model are precipitation, evaporation, and turbulent advection–diffusion of water vapor, and they are represented in idealized form as eddy diffusion, damping, and stochastic forcing. Consequently, the form of the model is a damped version of the two-dimensional stochastic heat equation. Exact analytical solutions are available for many statistics, and numerical realizations can be generated for minimal computational cost and for any desired time step. Given the simple form of the model, the results suggest that tropical convection may behave in a relatively simple, random way. Finally, relationships are also drawn with the Ising model, the Edwards–Wilkinson model, the Gaussian free field, and the Schramm–Loewner evolution and its possible connection with cloud cluster statistics. Potential applications of the model include several situations where realistic cloud fields must be generated for minimal cost, such as cloud parameterizations for climate models or radiative transfer models.

Corresponding author address: Scott Hottovy, Department of Mathematics, University of Wisconsin, 480 Lincoln Dr., Madison, WI 53706. E-mail: shottovy@math.wisc.edu

Abstract

A linear stochastic model is presented for the dynamics of water vapor and tropical convection. Despite its linear formulation, the model reproduces a wide variety of observational statistics from disparate perspectives, including (i) a cloud cluster area distribution with an approximate power law; (ii) a power spectrum of spatiotemporal red noise, as in the “background spectrum” of tropical convection; and (iii) a suite of statistics that resemble the statistical physics concepts of critical phenomena and phase transitions. The physical processes of the model are precipitation, evaporation, and turbulent advection–diffusion of water vapor, and they are represented in idealized form as eddy diffusion, damping, and stochastic forcing. Consequently, the form of the model is a damped version of the two-dimensional stochastic heat equation. Exact analytical solutions are available for many statistics, and numerical realizations can be generated for minimal computational cost and for any desired time step. Given the simple form of the model, the results suggest that tropical convection may behave in a relatively simple, random way. Finally, relationships are also drawn with the Ising model, the Edwards–Wilkinson model, the Gaussian free field, and the Schramm–Loewner evolution and its possible connection with cloud cluster statistics. Potential applications of the model include several situations where realistic cloud fields must be generated for minimal cost, such as cloud parameterizations for climate models or radiative transfer models.

Corresponding author address: Scott Hottovy, Department of Mathematics, University of Wisconsin, 480 Lincoln Dr., Madison, WI 53706. E-mail: shottovy@math.wisc.edu
Save
  • Alexandrov, M. D., A. Marshak, and A. S. Ackerman, 2010: Cellular statistical models of broken cloud fields. Part I: Theory. J. Atmos. Sci., 67, 21252151, doi:10.1175/2010JAS3364.1.

    • Search Google Scholar
    • Export Citation
  • Antal, T., and Z. Rácz, 1996: Dynamic scaling of the width distribution in Edwards–Wilkinson type models of interface dynamics. Phys. Rev., 54E, 2256, doi:10.1103/PhysRevE.54.2256.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, part I. J. Atmos. Sci., 31, 674701, doi:10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bak, P., C. Tang, and K. Wiesenfeld, 1987: Self-organized criticality: An explanation of the 1/f noise. Phys. Rev. Lett., 59, 381, doi:10.1103/PhysRevLett.59.381.

    • Search Google Scholar
    • Export Citation
  • Bak, P., C. Tang, and K. Wiesenfeld, 1988: Self-organized criticality. Phys. Rev., 38A, 364, doi:10.1103/PhysRevA.38.364.

  • Barabási, A.-L., and H. E. Stanley, 1995: Fractal Concepts in Surface Growth. Cambridge University Press, 366 pp.

  • Baxter, R. J., 1989: Exactly Solved Models in Statistical Mechanics. Academic Press, 486 pp.

  • Bengtsson, L., H. Körnich, E. Källén, and G. Svensson, 2011: Large-scale dynamical response to subgrid-scale organization provided by cellular automata. J. Atmos. Sci., 68, 31323144, doi:10.1175/JAS-D-10-05028.1.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., M. Steinheimer, P. Bechtold, and J.-F. Geleyn, 2013: A stochastic parametrization for deep convection using cellular automata. Quart. J. Roy. Meteor. Soc., 139, 15331543, doi:10.1002/qj.2108.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and M. J. Miller, 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets. Quart. J. Roy. Meteor. Soc., 112, 693709, doi:10.1002/qj.49711247308.

    • Search Google Scholar
    • Export Citation
  • Christensen, K., and N. R. Moloney, 2005: Complexity and Criticality. Advanced Physics Texts, Vol. 1, Imperial College Press, 408 pp.

  • Craig, G. C., and J. M. Mack, 2013: A coarsening model for self-organization of tropical convection. J. Geophys. Res. Atmos., 118, 87618769, doi:10.1002/jgrd.50674.

    • Search Google Scholar
    • Export Citation
  • DelSole, T., 2004: Stochastic models of quasigeostrophic turbulence. Surv. Geophys., 25, 107149, doi:10.1023/B:GEOP.0000028164.58516.b2.

    • Search Google Scholar
    • Export Citation
  • Deng, Q., B. Khouider, and A. J. Majda, 2015: The MJO in a coarse-resolution GCM with a stochastic multicloud parameterization. J. Atmos. Sci., 72, 5574, doi:10.1175/JAS-D-14-0120.1.

    • Search Google Scholar
    • Export Citation
  • Dias, J., and G. N. Kiladis, 2014: Influence of the basic state zonal flow on convectively coupled equatorial waves. Geophys. Res. Lett., 41, 69046913, doi:10.1002/2014GL061476.

    • Search Google Scholar
    • Export Citation
  • Edwards, S. F., and D. R. Wilkinson, 1982: The surface statistics of a granular aggregate. Proc. Roy. Soc. London, 381A, 1731, doi:10.1098/rspa.1982.0056.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., J. David Neelin, and C. S. Bretherton, 1994: On large-scale circulations in convecting atmospheres. Quart. J. Roy. Meteor. Soc., 120, 11111143, doi:10.1002/qj.49712051902.

    • Search Google Scholar
    • Export Citation
  • Frenkel, Y., A. J. Majda, and B. Khouider, 2012: Using the stochastic multicloud model to improve tropical convective parameterization: A paradigm example. J. Atmos. Sci., 69, 10801105, doi:10.1175/JAS-D-11-0148.1.

    • Search Google Scholar
    • Export Citation
  • Frenkel, Y., A. J. Majda, and B. Khouider, 2013: Stochastic and deterministic multicloud parameterizations for tropical convection. Climate Dyn., 41, 15271551, doi:10.1007/s00382-013-1678-z.

    • Search Google Scholar
    • Export Citation
  • Gardiner, C., 2009: Stochastic Methods: A Handbook for the Natural and Social Sciences. 4th ed. Springer Series in Synergetics, Vol. 13, Springer, 447 pp.

  • Gilmore, J. B., 2015: Understanding the influence of measurement uncertainty on the atmospheric transition in rainfall and column water vapor. J. Atmos. Sci., 72, 20412054, doi:10.1175/JAS-D-14-0211.1.

    • Search Google Scholar
    • Export Citation
  • Hairer, M., 2009: An introduction to stochastic PDEs. Accessed 23 July 2009. [Available online at http://arxiv.org/abs/0907.4178.]

  • Han, Y., and B. Khouider, 2010: Convectively coupled waves in a sheared environment. J. Atmos. Sci., 67, 29132942, doi:10.1175/2010JAS3335.1.

    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., and J. D. Neelin, 2009: Moisture vertical structure, column water vapor, and tropical deep convection. J. Atmos. Sci., 66, 16651683, doi:10.1175/2008JAS2806.1.

    • Search Google Scholar
    • Export Citation
  • Hottovy, S., and S. N. Stechmann, 2015: Threshold models for rainfall and convection: Deterministic versus stochastic triggers. SIAM J. Appl. Math., 75, 861884, doi:10.1137/140980788.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1989: Observed structure of mesoscale convective systems and implications for large-scale heating. Quart. J. Roy. Meteor. Soc., 115, 425461, doi:10.1002/qj.49711548702.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Hung, M.-P., J.-L. Lin, W. Wang, D. Kim, T. Shinoda, and S. J. Weaver, 2013: MJO and convectively coupled equatorial waves simulated by CMIP5 climate models. J. Climate, 26, 61856214, doi:10.1175/JCLI-D-12-00541.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 23972418, doi:10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., 2014: A coarse grained stochastic multi-type particle interacting model for tropical convection: Nearest neighbour interactions. Commun. Math. Sci., 12, 13791407, doi:10.4310/CMS.2014.v12.n8.a1.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., and A. J. Majda, 2006: A simple multicloud parameterization for convectively coupled tropical waves. Part I: Linear analysis. J. Atmos. Sci., 63, 13081323, doi:10.1175/JAS3677.1.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., A. J. Majda, and M. A. Katsoulakis, 2003: Coarse-grained stochastic models for tropical convection and climate. Proc. Natl. Acad. Sci. USA, 100, 11 94111 946, doi:10.1073/pnas.1634951100.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., J. A. Biello, and A. J. Majda, 2010: A stochastic multicloud model for tropical convection. Commun. Math. Sci., 8, 187216, doi:10.4310/CMS.2010.v8.n1.a10.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, doi:10.1029/2008RG000266.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19, 26652690, doi:10.1175/JCLI3735.1.

    • Search Google Scholar
    • Export Citation
  • Lin, J. W.-B., and J. D. Neelin, 2000: Influence of a stochastic moist convective parameterization on tropical climate variability. Geophys. Res. Lett., 27, 36913694, doi:10.1029/2000GL011964.

    • Search Google Scholar
    • Export Citation
  • Lin, J. W.-B., and J. D. Neelin, 2002: Considerations for stochastic convective parameterization. J. Atmos. Sci., 59, 959975, doi:10.1175/1520-0469(2002)059<0959:CFSCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, J. W.-B., and J. D. Neelin, 2003: Toward stochastic deep convective parameterization in general circulation models. Geophys. Res. Lett., 30, 1162, doi:10.1029/2002GL016203.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and P. R. Kramer, 1999: Simplified models for turbulent diffusion: Theory, numerical modelling, and physical phenomena. Phys. Rep., 314, 237574, doi:10.1016/S0370-1573(98)00083-0.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and B. Khouider, 2002: Stochastic and mesoscopic models for tropical convection. Proc. Natl. Acad. Sci. USA, 99, 11231128, doi:10.1073/pnas.032663199.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and M. J. Grote, 2007: Explicit off-line criteria for stable accurate time filtering of strongly unstable spatially extended systems. Proc. Natl. Acad. Sci. USA, 104, 11241129, doi:10.1073/pnas.0610077104.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and M. J. Grote, 2009: Mathematical test models for superparametrization in anisotropic turbulence. Proc. Natl. Acad. Sci. USA, 106, 54705474, doi:10.1073/pnas.0901383106.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and S. N. Stechmann, 2009a: A simple dynamical model with features of convective momentum transport. J. Atmos. Sci., 66, 373392, doi:10.1175/2008JAS2805.1.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and S. N. Stechmann, 2009b: The skeleton of tropical intraseasonal oscillations. Proc. Natl. Acad. Sci. USA, 106, 8417, doi:10.1073/pnas.0903367106.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and B. Gershgorin, 2013: Elementary models for turbulent diffusion with complex physical features: Eddy diffusivity, spectrum and intermittency. Philos. Trans. Roy. Soc. London, A371, doi:10.1098/rsta.2012.0184.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 2000: Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. J. Atmos. Sci., 57, 15151535, doi:10.1175/1520-0469(2000)057<1515:CISSTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 1992: Organized convective systems: Archetypal dynamical models, mass and momentum flux theory, and parameterization. Quart. J. Roy. Meteor. Soc., 118, 819850, doi:10.1002/qj.49711850703.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and N. Zeng, 2000: A quasi-equilibrium tropical circulation model—Formulation. J. Atmos. Sci., 57, 17411766, doi:10.1175/1520-0469(2000)057<1741:AQETCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., O. Peters, J. W.-B. Lin, K. Hales, and C. E. Holloway, 2008: Rethinking convective quasi-equilibrium: Observational constraints for stochastic convective schemes in climate models. Philos. Trans. Roy. Soc. London, A366, 25812604, doi:10.1098/rsta.2008.0056.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., O. Peters, and K. Hales, 2009: The transition to strong convection. J. Atmos. Sci., 66, 23672384, doi:10.1175/2009JAS2962.1.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., B. R. Lintner, B. Tian, Q. Li, L. Zhang, P. K. Patra, M. T. Chahine, and S. N. Stechmann, 2010: Long tails in deep columns of natural and anthropogenic tropospheric tracers. Geophys. Res. Lett., 37, L05804, doi:10.1029/2009GL041726.

    • Search Google Scholar
    • Export Citation
  • Newman, M. E. J., and G. T. Barkema, 1999: Monte Carlo Methods in Statistical Physics. Clarendon Press, 475 pp.

  • Peters, O., and J. D. Neelin, 2006: Critical phenomena in atmospheric precipitation. Nat. Phys., 2, 393396, doi:10.1038/nphys314.

  • Peters, O., J. D. Neelin, and S. W. Nesbitt, 2009: Mesoscale convective systems and critical clusters. J. Atmos. Sci., 66, 29132924, doi:10.1175/2008JAS2761.1.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., H. W. Barker, and J.-J. Morcrette, 2003: A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields. J. Geophys. Res., 108, 4376, doi:10.1029/2002JD003322.

    • Search Google Scholar
    • Export Citation
  • Pruessner, G., 2003: The Oslo rice pile model is a quenched Edwards-Wilkinson equation. Phys. Rev., 67E, 030301, doi:10.1103/PhysRevE.67.030301.

    • Search Google Scholar
    • Export Citation
  • Pruessner, G., 2012: Self-Organised Criticality: Theory, Models and Characterisation. Cambridge University Press, 516 pp.

  • Räisänen, P., H. W. Barker, M. F. Khairoutdinov, L. Jiangnan, and D. A. Randall, 2004: Stochastic generation of subgrid-scale cloudy columns for large-scale models. Quart. J. Roy. Meteor. Soc., 130, 20472067, doi:10.1256/qj.03.99.

    • Search Google Scholar
    • Export Citation
  • Randall, D., M. Khairoutdinov, A. Arakawa, and W. Grabowski, 2003: Breaking the cloud parameterization deadlock. Bull. Amer. Meteor. Soc., 84, 15471564, doi:10.1175/BAMS-84-11-1547.

    • Search Google Scholar
    • Export Citation
  • Schramm, O., and S. Sheffield, 2009: Contour lines of the two-dimensional discrete Gaussian free field. Acta Math., 202, 21137, doi:10.1007/s11511-009-0034-y.

    • Search Google Scholar
    • Export Citation
  • Schramm, O., and S. Sheffield, 2013: A contour line of the continuum Gaussian free field. Probab. Theory Relat. Fields, 157, 4780, doi:10.1007/s00440-012-0449-9.

    • Search Google Scholar
    • Export Citation
  • Stechmann, S. N., and J. D. Neelin, 2011: A stochastic model for the transition to strong convection. J. Atmos. Sci., 68, 29552970, doi:10.1175/JAS-D-11-028.1.

    • Search Google Scholar
    • Export Citation
  • Stechmann, S. N., and J. D. Neelin, 2014: First-passage-time prototypes for precipitation statistics. J. Atmos. Sci., 71, 32693291, doi:10.1175/JAS-D-13-0268.1.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., 1994: Large-scale cloud disturbances associated with equatorial waves. I: Spectral features of the cloud disturbances. J. Meteor. Soc. Japan, 72, 433449.

    • Search Google Scholar
    • Export Citation
  • Thual, S., A. J. Majda, and S. N. Stechmann, 2014: A stochastic skeleton model for the MJO. J. Atmos. Sci., 71, 697715, doi:10.1175/JAS-D-13-0186.1.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, doi:10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and P. Field, 2011: The distribution of cloud horizontal sizes. J. Climate, 24, 48004816, doi:10.1175/2011JCLI4056.1.

  • Yaglom, A. M., 1962: An Introduction to the Theory of Stationary Random Functions. Revised English ed. Prentice-Hall, 235 pp.

  • Yeomans, J. M., 1992: Statistical Mechanics of Phase Transitions. Oxford Science Publications, 168 pp.

  • Yu, Y.-K., N.-N. Pang, and T. Halpin-Healy, 1994: Concise calculation of the scaling function, exponents, and probability functional of the Edwards-Wilkinson equation with correlated noise. Phys. Rev., 50E, 5111, doi:10.1103/PhysRevE.50.5111.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian Oscillation. Rev. Geophys., 43, G2003, doi:10.1029/2004RG000158.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 646 250 26
PDF Downloads 296 87 11