• Andrews, D. G., , J. R. Holton, , and C. B. Leovy, 1987: Middle Atmosphere Dynamics. International Geophysics Series, Vol. 40, Academic Press, 489 pp.

  • Butler, A. H., , D. W. J. Thompson, , and R. Heikes, 2010: The steady-state atmospheric circulation response to climate change–like thermal forcings in a simple general circulation model. J. Climate, 23, 34743496, doi:10.1175/2010JCLI3228.1.

    • Search Google Scholar
    • Export Citation
  • Chen, G., , and I. M. Held, 2007: Phase speed spectra and the recent poleward shift of Southern Hemisphere surface westerlies. Geophys. Res. Lett.,34, L21805, doi:10.1029/2007GL031200.

  • Chen, G., , and L. Sun, 2011: Mechanisms of the tropical upwelling branch of the Brewer–Dobson circulation: The role of extratropical waves. J. Atmos. Sci., 68, 28782892, doi:10.1175/JAS-D-11-044.1.

    • Search Google Scholar
    • Export Citation
  • Chen, P., , and W. Robinson, 1992: Propagation of planetary waves between the troposphere and stratosphere. J. Atmos. Sci., 49, 25332545, doi:10.1175/1520-0469(1992)049<2533:POPWBT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Domeisen, D. I. V., , L. Sun, , and G. Chen, 2013: The role of synoptic eddies in the tropospheric response to stratospheric variability. Geophys. Res. Lett., 40, 4933–4937, doi:10.1002/grl.50943.

    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., , and T. G. Shepherd, 1989: The importance of surface pressure changes in the response of the atmosphere to zonally symmetric thermal and mechanical forcing. Quart. J. Roy. Meteor. Soc., 115, 11811208, doi:10.1002/qj.49711549002.

    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., , C. J. Marks, , M. E. McIntyre, , T. G. Shepherd, , and K. P. Shine, 1991: On the “downward control” of extratropical diabatic circulation by eddy-induced mean zonal forces. J. Atmos. Sci., 48, 651678, doi:10.1175/1520-0469(1991)048<0651:OTCOED>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kushner, P., , and L. Polvani, 2004: Stratosphere–troposphere coupling in a relatively simple AGCM: The role of eddies. J. Climate, 17, 629639, doi:10.1175/1520-0442(2004)017<0629:SCIARS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kushner, P., , and L. Polvani, 2006: Stratosphere–troposphere coupling in a relatively simple AGCM: Impact of the seasonal cycle. J. Climate, 19, 57215727, doi:10.1175/JCLI4007.1.

    • Search Google Scholar
    • Export Citation
  • Lin, P., , and Q. Fu, 2013: Changes in various branches of the Brewer–Dobson circulation from an ensemble of chemistry climate models. J. Geophys. Res. Atmos., 118, 7384, doi:10.1029/2012JD018813.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., , and D. L. Hartmann, 2001: Eddy–zonal flow feedback in the Southern Hemisphere. J. Atmos. Sci., 58, 33123327, doi:10.1175/1520-0469(2001)058<3312:EZFFIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., , and E. T. DeWeaver, 2007: Tropopause height and zonal wind response to global warming in the IPCC scenario integrations. J. Geophys. Res.,112, D10119, doi:10.1029/2006JD008087.

  • McLandress, C., , A. I. Jonsson, , D. A. Plummer, , M. C. Reader, , J. F. Scinocca, , and T. G. Shepherd, 2010: Separating the dynamical effects of climate change and ozone depletion. Part I: Southern Hemisphere stratosphere. J. Climate, 23, 50025020, doi:10.1175/2010JCLI3586.1.

    • Search Google Scholar
    • Export Citation
  • Orr, A., , T. J. Bracegirdle, , J. S. Hosking, , T. Jung, , J. D. Haigh, , T. Phillips, , and W. Feng, 2012: Possible dynamical mechanisms for Southern Hemisphere climate change due to the ozone hole. J. Atmos. Sci., 69, 29172932, doi:10.1175/JAS-D-11-0210.1.

    • Search Google Scholar
    • Export Citation
  • Orr, A., , T. J. Bracegirdle, , J. S. Hosking, , W. Feng, , H. K. Roscoe, , and J. D. Haigh, 2013: Strong dynamical modulation of the cooling of the polar stratosphere associated with the Antarctic ozone hole. J. Climate, 26, 662668, doi:10.1175/JCLI-D-12-00480.1.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., , D. W. Waugh, , G. J. P. Correa, , and S.-W. Son, 2011: Stratospheric ozone depletion: The main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere. J. Climate, 24, 795812, doi:10.1175/2010JCLI3772.1.

    • Search Google Scholar
    • Export Citation
  • Scinocca, J. F., , and P. H. Haynes, 1998: Dynamical forcing of stratospheric planetary waves by tropospheric baroclinic eddies. J. Atmos. Sci., 55, 23612392, doi:10.1175/1520-0469(1998)055<2361:DFOSPW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., , J. Perlwitz, , and N. Harnik, 2010: Downward wave coupling between the stratosphere and troposphere: The importance of meridional wave guiding and comparison with zonal-mean coupling. J. Climate, 23, 63656381, doi:10.1175/2010JCLI3804.1.

    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., , M. Blackburn, , and J. D. Haigh, 2009: The role of eddies in driving the tropospheric response to stratospheric heating perturbations. J. Atmos. Sci., 66, 13471365, doi:10.1175/2008JAS2758.1.

    • Search Google Scholar
    • Export Citation
  • Song, Y., , and W. A. Robinson, 2004: Dynamical mechanisms for stratospheric influences on the troposphere. J. Atmos. Sci., 61, 17111725, doi:10.1175/1520-0469(2004)061<1711:DMFSIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sun, L., , and W. A. Robinson, 2009: Downward influence of stratospheric final warming events in an idealized model. Geophys. Res. Lett.,36, L03819, doi:10.1029/2008GL036624.

  • Sun, L., , W. A. Robinson, , and G. Chen, 2011: The role of planetary waves in the downward influence of stratospheric final warming events. J. Atmos. Sci., 68, 28262843, doi:10.1175/JAS-D-11-014.1.

    • Search Google Scholar
    • Export Citation
  • Sun, L., , G. Chen, , and W. A. Robinson, 2014: The role of stratospheric polar vortex breakdown in Southern Hemisphere climate trends. J. Atmos. Sci., 71, 2335–2353, doi:10.1175/JAS-D-13-0290.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , J. C. Furtado, , and T. G. Shepherd, 2006: On the tropospheric response to anomalous stratospheric wave drag and radiative heating. J. Atmos. Sci., 63, 26162629, doi:10.1175/JAS3771.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , S. Solomon, , P. J. Kushner, , M. H. England, , K. M. Grise, , and D. J. Karoly, 2011: Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci., 4, 741749, doi:10.1038/ngeo1296.

    • Search Google Scholar
    • Export Citation
  • Wilcox, L. J., , and A. J. Charlton-Perez, 2013: Final warming of the Southern Hemisphere polar vortex in high- and low-top CMIP5 models. J. Geophys. Res. Atmos., 118, 25352546, doi:10.1002/jgrd.50254.

    • Search Google Scholar
    • Export Citation
  • Williams, G. P., 2006: Circulation sensitivity to tropopause height. J. Atmos. Sci., 63, 19541961, doi:10.1175/JAS3762.1.

  • Wittman, M. A. H., , A. J. Charlton, , and L. M. Polvani, 2007: The effect of lower stratospheric shear on baroclinic instability. J. Atmos. Sci., 64, 479496, doi:10.1175/JAS3828.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 21 21 4
PDF Downloads 13 13 5

Separating the Mechanisms of Transient Responses to Stratospheric Ozone Depletion–Like Cooling in an Idealized Atmospheric Model

View More View Less
  • 1 Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York
  • | 2 National Center for Atmospheric Research,* Boulder, Colorado
  • | 3 Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York
© Get Permissions
Restricted access

Abstract

Previous studies have suggested that Southern Hemisphere (SH) summertime trends in the atmospheric circulation in the second half of the twentieth century are mainly driven by stratospheric ozone depletion in spring. Here, the authors show that the pattern and timing of observed trends, characterized by downward propagation of signals, can be approximately captured in an idealized atmospheric global circulation model (AGCM) by imposing ozone depletion–like radiative cooling.

It is further shown that the synoptic eddies dominantly contribute to the transient tropospheric response to polar stratospheric cooling. The authors examine three possible mechanisms on the downward influence of polar stratospheric cooling. The polar stratospheric cooling affects tropospheric synoptic eddies via (i) the direct influences on the lower-stratospheric synoptic eddies, (ii) the planetary wave–induced residual circulation, and (iii) the planetary eddy–synoptic eddy nonlinear interaction. It is argued that the planetary wave–induced residual circulation is not the dominant mechanism and that the planetary eddies and further nonlinear interaction with synoptic eddies are more likely the key to the downward influence of the ozone depletion–like cooling.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Huang Yang, Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY 14853. E-mail: hy337@cornell.edu

Abstract

Previous studies have suggested that Southern Hemisphere (SH) summertime trends in the atmospheric circulation in the second half of the twentieth century are mainly driven by stratospheric ozone depletion in spring. Here, the authors show that the pattern and timing of observed trends, characterized by downward propagation of signals, can be approximately captured in an idealized atmospheric global circulation model (AGCM) by imposing ozone depletion–like radiative cooling.

It is further shown that the synoptic eddies dominantly contribute to the transient tropospheric response to polar stratospheric cooling. The authors examine three possible mechanisms on the downward influence of polar stratospheric cooling. The polar stratospheric cooling affects tropospheric synoptic eddies via (i) the direct influences on the lower-stratospheric synoptic eddies, (ii) the planetary wave–induced residual circulation, and (iii) the planetary eddy–synoptic eddy nonlinear interaction. It is argued that the planetary wave–induced residual circulation is not the dominant mechanism and that the planetary eddies and further nonlinear interaction with synoptic eddies are more likely the key to the downward influence of the ozone depletion–like cooling.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Huang Yang, Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY 14853. E-mail: hy337@cornell.edu
Save