• Ball, F. K., 1960: Control of inversion height by surface heating. Quart. J. Roy. Meteor. Soc., 86, 483494, doi:10.1002/qj.49708637005.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1973: Non-precipitating cumulus convection and its parameterization. Quart. J. Roy. Meteor. Soc., 99, 178196, doi:10.1002/qj.49709941915.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1974: Reply to comment on the paper “Non-precipitating cumulus convection and its parameterization”. Quart. J. Roy. Meteor. Soc., 100, 469471, doi:10.1002/qj.49710042517.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , and S. Park, 2009: A new moist turbulence parameterization in the Community Atmosphere Model. J. Climate, 22, 34223448, doi:10.1175/2008JCLI2556.1.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and et al. , 1999: An intercomparison of radiatively driven entrainment and turbulence in a smoke cloud, as simulated by different numerical models. Quart. J. Roy. Meteor. Soc., 125, 391423, doi:10.1002/qj.49712555402.

    • Search Google Scholar
    • Export Citation
  • Charuchittipan, D., , and J. D. Wilson, 2009: Turbulent kinetic energy dissipation in the surface layer. Bound.-Layer Meteor., 132, 193204, doi:10.1007/s10546-009-9399-x.

    • Search Google Scholar
    • Export Citation
  • Cohn, S. A., , and W. M. Angevine, 2000: Boundary layer height and entrainment zone thickness measured by lidars and wind-profiling radars. J. Appl. Meteor., 39, 12331247, doi:10.1175/1520-0450(2000)039<1233:BLHAEZ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Conzemius, R., , and E. Fedorovich, 2006: Dynamics of sheared convective boundary layer entrainment. Part II: Evaluation of bulk model predictions of entrainment flux. J. Atmos. Sci., 63, 11791199, doi:10.1175/JAS3696.1.

    • Search Google Scholar
    • Export Citation
  • Conzemius, R., , and E. Fedorovich, 2007: Bulk models of the sheared convective boundary layer: Evaluation through large-eddy simulations. J. Atmos. Sci., 64, 786807, doi:10.1175/JAS3870.1.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1970: Convective velocity and temperature scales for the unstable planetary boundary layer and for Rayleigh convection. J. Atmos. Sci., 27, 12111213, doi:10.1175/1520-0469(1970)027<1211:CVATSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1976: On the entrainment rate of stratocumulus-topped mixed layer. Quart. J. Roy. Meteor. Soc., 102, 563582, doi:10.1002/qj.49710243306.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1979: Prediction of convective mixed-layer entrainment for realistic capping inversion structure. J. Atmos. Sci., 36, 424436, doi:10.1175/1520-0469(1979)036<0424:POCMLE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1981: On the distribution of mean radiative cooling at the top of a stratocumulus-capped mixed layer. Quart. J. Roy. Meteor. Soc., 107, 191202, doi:10.1002/qj.49710745112.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1983: A multi-limit mixed-layer entrainment formulation. J. Phys. Oceanogr., 13, 9881002, doi:10.1175/1520-0485(1983)013<0988:AMLMLE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., , G. E. Willis, , and B. H. Stockton, 1980: Laboratory studies of the entrainment zone of a convectively mixed layer. J. Fluid Mech., 100, 4164, doi:10.1017/S0022112080001000.

    • Search Google Scholar
    • Export Citation
  • De Lozar, A., , and J. P. Mellado, 2013: Direct numerical simulations of a smoke cloud–top mixing layer as a model for stratocumuli. J. Atmos. Sci., 70, 23562375, doi:10.1175/JAS-D-12-0333.1.

    • Search Google Scholar
    • Export Citation
  • Dillon, T. M., 1982: Vertical overturns: A comparison of Thorpe and Ozmidov length scales. J. Geophys. Res., 87, 96019613, doi:10.1029/JC087iC12p09601.

    • Search Google Scholar
    • Export Citation
  • Driedonks, A. G. M., 1982: Models and observations of the growth of the atmospheric boundary layer. Bound.-Layer Meteor., 23, 283306, doi:10.1007/BF00121117.

    • Search Google Scholar
    • Export Citation
  • Driedonks, A. G. M., , and H. Tennekes, 1984: Entrainment effects in the well-mixed atmospheric boundary layer. Bound.-Layer Meteor., 30, 75105, doi:10.1007/BF00121950.

    • Search Google Scholar
    • Export Citation
  • Fedorovich, E., 1995: Modeling the atmospheric convective boundary layer within a zero-order jump approach: An extended theoretical framework. J. Appl. Meteor., 34, 19161928, doi:10.1175/1520-0450(1995)034<1916:MTACBL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fedorovich, E., , and D. Mironov, 1995: A model for a shear-free convective boundary layer with parameterized capping inversion structure. J. Atmos. Sci., 52, 8395, doi:10.1175/1520-0469(1995)052<0083:AMFASF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fedorovich, E., , R. Conzemius, , and D. Mironov, 2004: Convective entrainment into a shear-free, linearly stratified atmosphere: Bulk models reevaluated through large-eddy simulations. J. Atmos. Sci., 61, 281295, doi:10.1175/1520-0469(2004)061<0281:CEIASL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garcia, J., , and J. P. Mellado, 2014: The two-layer structure of the entrainment zone in the convective boundary layer. J. Atmos. Sci., 71, 19351955, doi:10.1175/JAS-D-13-0148.1.

    • Search Google Scholar
    • Export Citation
  • Garratt, J., 1994: The Atmospheric Boundary Layer. Cambridge University Press, 336 pp.

  • Gentine, P., , A. K. Betts, , B. R. Lintner, , K. L. Findell, , C. C. van Heerwaarden, , A. Tzella, , and F. D’Andrea, 2013a: A probabilistic bulk model of coupled mixed layer and convection. Part I: Clear-sky case. J. Atmos. Sci., 70, 15431556, doi:10.1175/JAS-D-12-0145.1.

    • Search Google Scholar
    • Export Citation
  • Gentine, P., , A. K. Betts, , B. R. Lintner, , K. L. Findell, , C. C. van Heerwaarden, , and F. D’Andrea, 2013b: A probabilistic bulk model of coupled mixed layer and convection. Part II: Shallow convection case. J. Atmos. Sci., 70, 15571576, doi:10.1175/JAS-D-12-0146.1.

    • Search Google Scholar
    • Export Citation
  • Gentine, P., , A. A. M. Holtslag, , F. D’Andrea, , and M. Ek, 2013c: Surface and atmospheric controls on the onset of moist convection over land. J. Hydrometeor., 14, 1443–1462, doi:10.1175/JHM-D-12-0137.1.

    • Search Google Scholar
    • Export Citation
  • Hägeli, P., , D. G. Steyn, , and K. B. Strawbridge, 2000: Spatial and temporal variability of mixed-layer depth and entrainment zone thickness. Bound.-Layer Meteor., 97, 4771, doi:10.1023/A:1002790424133.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., , and C. S. Bretherton, 2011: Simulating deep convection with a shallow convection scheme. Atmos. Chem. Phys., 11, 10 38910 406, doi:10.5194/acp-11-10389-2011.

    • Search Google Scholar
    • Export Citation
  • Jonker, H., , and M. A. Jiménez, 2014: Laboratory experiments on convective entrainment using a saline water tank. Bound.-Layer Meteor., 151, 479–500, doi:10.1007/s10546-014-9909-3.

    • Search Google Scholar
    • Export Citation
  • Kim, S.-W., , S.-U. Park, , D. Pino, , and J. V.-G. de Arellano, 2006: Parameterization of entrainment in a sheared convective boundary layer using a first-order jump model. Bound.-Layer Meteor., 120, 455475, doi:10.1007/s10546-006-9067-3.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1968: Models of cloud-topped mixed layers under a strong inversion. Quart. J. Roy. Meteor. Soc., 94, 292309, doi:10.1002/qj.49709440106.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 2002a: Entrainment into mixed layers. Part I: Sharp-edged and smoothed tops. J. Atmos. Sci., 59, 33403352, doi:10.1175/1520-0469(2002)059<3340:EIMLPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 2002b: Entrainment into mixed layers. Part II: A new closure. J. Atmos. Sci., 59, 33533361, doi:10.1175/1520-0469(2002)059<3353:EIMLPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mason, P. J., 1989: Large-eddy simulation of the convective atmospheric boundary layer. J. Atmos. Sci., 46, 14921516, doi:10.1175/1520-0469(1989)046<1492:LESOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mellado, J. P., , B. Stevens, , H. Schmidt, , and N. Peters, 2010: Probability density functions in the cloud-top mixing layer. New J. Phys., 12, 085010, doi:10.1088/1367-2630/12/8/085010.

    • Search Google Scholar
    • Export Citation
  • Morinishi, Y., , T. S. Lund, , O. V. Vasilyev, , and P. Moin, 1998: Fully conservative higher order finite difference schemes for incompressible flow. J. Comput. Phys., 143, 90124, doi:10.1006/jcph.1998.5962.

    • Search Google Scholar
    • Export Citation
  • Neggers, R. A. J., , B. Stevens, , and J. D. Neelin, 2007: Variance scaling in shallow-cumulus-topped mixed layers. Quart. J. Roy. Meteor. Soc., 133, 16291641, doi:10.1002/qj.105.

    • Search Google Scholar
    • Export Citation
  • Park, S., , and C. S. Bretherton, 2009: The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the Community Atmosphere Model. J. Climate, 22, 34493469, doi:10.1175/2008JCLI2557.1.

    • Search Google Scholar
    • Export Citation
  • Pino, D., , J. V.-G. de Arellano, , and P. G. Duynkerke, 2003: The contribution of shear to the evolution of a convective boundary layer. J. Atmos. Sci., 60, 19131926, doi:10.1175/1520-0469(2003)060<1913:TCOSTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pino, D., , J. V.-G. de Arellano, , and S.-W. Kim, 2006: Representing sheared convective boundary layer by zeroth- and first-order-jump mixed-layer models: Large-eddy simulation verification. J. Appl. Meteor. Climatol., 45, 12241243, doi:10.1175/JAM2396.1.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., 1980a: Conditional instability of the first kind upside-down. J. Atmos. Sci., 37, 125130, doi:10.1175/1520-0469(1980)037<0125:CIOTFK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., 1980b: Entrainment into a stratocumulus layer with distributed radiative cooling. J. Atmos. Sci., 37, 148159, doi:10.1175/1520-0469(1980)037<0148:EIASLW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., 1984: Buoyant production and consumption of turbulence kinetic energy in cloud-topped mixed layers. J. Atmos. Sci., 41, 402413, doi:10.1175/1520-0469(1984)041<0402:BPACOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. Mon. Wea. Rev., 91, 99164, doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., , and D. Lenschow, 2001: Observations, experiments, and large-eddy simulation. Bull. Amer. Meteor. Soc., 82, 283–294, doi:10.1175/1520-0477(2001)082<0283:OEALES>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stevens, D. E., , and C. S. Bretherton, 1999: Effects of resolution on the simulation of stratocumulus entrainment. Quart. J. Roy. Meteor. Soc., 125, 425439, doi:10.1002/qj.49712555403.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1973: Inversion rise model based on penetrative convection. J. Atmos. Sci., 30, 10921099, doi:10.1175/1520-0469(1973)030<1092:IRMBOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., , and E. G. Patton, 2011: The effect of mesh resolution on convective boundary layer statistics and structures generated by large-eddy simulation. J. Atmos. Sci., 68, 23952415, doi:10.1175/JAS-D-10-05010.1.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., , C.-H. Moeng, , B. Stevens, , D. Lenschow, , and S. Mayor, 1998: Structure of the entrainment zone capping the convective atmospheric boundary layer. J. Atmos. Sci., 55, 30423064, doi:10.1175/1520-0469(1998)055<3042:SOTEZC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Teixeira, J., and et al. , 2008: Parameterization of the atmospheric boundary layer: A view from just above the inversion. Bull. Amer. Meteor. Soc., 89, 453458, doi:10.1175/BAMS-89-4-453.

    • Search Google Scholar
    • Export Citation
  • Tennekes, H., 1973: A model for the dynamics of the inversion above a convective boundary layer. J. Atmos. Sci., 30, 558567, doi:10.1175/1520-0469(1973)030<0558:AMFTDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tennekes, H., , and A. G. M. Driedonks, 1981: Basic entrainment equations for the atmospheric boundary layer. Bound.-Layer Meteor., 20, 515531, doi:10.1007/BF00122299.

    • Search Google Scholar
    • Export Citation
  • vanZanten, M. C., , P. Duynkerke, , and J. Cuijpers, 1999: Entrainment parameterization in convective boundary layers. J. Atmos. Sci., 56, 813828, doi:10.1175/1520-0469(1999)056<0813:EPICBL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yamaguchi, T., , and D. A. Randall, 2012: Cooling of entrained parcels in a large-eddy simulation. J. Atmos. Sci., 69, 11181136, doi:10.1175/JAS-D-11-080.1.

    • Search Google Scholar
    • Export Citation
  • Zeman, O., , and H. Tennekes, 1977: Parameterization of the turbulent energy budget at the top of the daytime atmospheric boundary layer. J. Atmos. Sci., 34, 111123, doi:10.1175/1520-0469(1977)034<0111:POTTEB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S. S., 1975: Comments on “A model for the dynamics of the inversion above a convective boundary layer”. J. Atmos. Sci., 32, 991992, doi:10.1175/1520-0469(1975)032<0991:COMFTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S. S., 1991: Turbulent Penetrative Convection. Avebury, 179 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 78 78 13
PDF Downloads 43 43 8

A Closer Look at Boundary Layer Inversion in Large-Eddy Simulations and Bulk Models: Buoyancy-Driven Case

View More View Less
  • 1 Columbia University, New York, New York
  • | 2 Centre National de la Recherche Météorologique, Toulouse, France
  • | 3 Max Planck Institute for Meteorology, Hamburg, Germany
© Get Permissions
Restricted access

Abstract

The inversion layer (IL) of a clear-sky, buoyancy-driven convective boundary layer is investigated using large-eddy simulations covering a wide range of convective Richardson numbers. A new model of the IL is suggested and tested. The model performs better than previous first-order models of the entrainment and provides physical insights into the main controls of the mixed-layer and IL growths. A consistent prognostic equation of the IL growth is derived, with explicit dependence on the position of the minimum buoyancy flux, convective Richardson number, and relative stratification across the inversion G. The IL model expresses the interrelationship between the position and magnitude of the minimum buoyancy flux and inversion-layer depth. These relationships emphasize why zero-order jump models of the convective boundary layer perform well under a strong inversion and show that these models miss the additional parameter G to fully characterize the entrainment process under a weak inversion. Additionally, the position of the minimum buoyancy flux within the new IL model is shown to be a key component of convective boundary layer entrainment. The new IL model is sufficiently simple to be used in numerical weather prediction or general circulation models as a way to resolve the IL in a low-vertical-resolution model.

Denotes Open Access content.

Corresponding author address: Pierre Gentine, Earth Institute, and Earth and Environmental Engineering, Columbia University, 500 W 120th St., New York, NY 10027. E-mail: pg2328@columbia.edu

Abstract

The inversion layer (IL) of a clear-sky, buoyancy-driven convective boundary layer is investigated using large-eddy simulations covering a wide range of convective Richardson numbers. A new model of the IL is suggested and tested. The model performs better than previous first-order models of the entrainment and provides physical insights into the main controls of the mixed-layer and IL growths. A consistent prognostic equation of the IL growth is derived, with explicit dependence on the position of the minimum buoyancy flux, convective Richardson number, and relative stratification across the inversion G. The IL model expresses the interrelationship between the position and magnitude of the minimum buoyancy flux and inversion-layer depth. These relationships emphasize why zero-order jump models of the convective boundary layer perform well under a strong inversion and show that these models miss the additional parameter G to fully characterize the entrainment process under a weak inversion. Additionally, the position of the minimum buoyancy flux within the new IL model is shown to be a key component of convective boundary layer entrainment. The new IL model is sufficiently simple to be used in numerical weather prediction or general circulation models as a way to resolve the IL in a low-vertical-resolution model.

Denotes Open Access content.

Corresponding author address: Pierre Gentine, Earth Institute, and Earth and Environmental Engineering, Columbia University, 500 W 120th St., New York, NY 10027. E-mail: pg2328@columbia.edu
Save