• Adler, R. F., , M. J. Markus, , D. D. Fenn, , G. Szejwach, , and W. E. Shenk, 1983: Thunderstorm top structure observed by aircraft overflights with an infrared radiometer. J. Climate Appl. Meteor., 22, 579593, doi:10.1175/1520-0450(1983)022<0579:TTSOBA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. G., , D. M. Wilmouth, , J. B. Smith, , and D. S. Sayres, 2012: UV dosage levels in summer: Increased risk of ozone loss from convectively injected water vapor. Science, 337, 835839, doi:10.1126/science.1222978.

    • Search Google Scholar
    • Export Citation
  • Aydin, K., , and T. A. Seliga, 1984: Radar polarimetric backscattering properties of conical graupel. J. Atmos. Sci., 41, 18871892, doi:10.1175/1520-0469(1984)041<1887:RPBPOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Balakrishnan, N., , and D. S. Zrnić, 1990: Use of polarization to characterize precipitation and discriminate large hail. J. Atmos. Sci., 47, 15251540, doi:10.1175/1520-0469(1990)047<1525:UOPTCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bedka, K. M., 2011: Overshooting cloud top detections using MSG SEVIRI infrared brightness temperatures and their relationship to severe weather over Europe. Atmos. Res., 99, 175189, doi:10.1016/j.atmosres.2010.10.001.

    • Search Google Scholar
    • Export Citation
  • Bedka, K. M., , J. Brunner, , R. Dworak, , W. Feltz, , J. Otkin, , and T. Greenwald, 2010: Objective satellite-based detection of overshooting tops using infrared window channel brightness temperature gradients. J. Appl. Meteor. Climatol., 49, 181202, doi:10.1175/2009JAMC2286.1.

    • Search Google Scholar
    • Export Citation
  • Bedka, K. M., , R. Dworak, , J. Brunner, , and W. Feltz, 2012: Validation of satellite-based objective overshooting cloud-top detection methods using CloudSat cloud profiling radar observations. J. Appl. Meteor. Climatol., 51, 18111822, doi:10.1175/JAMC-D-11-0131.1.

    • Search Google Scholar
    • Export Citation
  • Berdeklis, P., , and R. List, 2001: The ice crystal–graupel collision charging mechanism of thunderstorm electrification. J. Atmos. Sci., 58, 27512770, doi:10.1175/1520-0469(2001)058<2751:TICGCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Borowska, L., , D. Zrnić, , A. Ryzhkov, , P. Zhang, , and C. Simmer, 2011: Polarimetric estimates of a 1-month accumulation of light rain with a 3-cm wavelength radar. J. Hydrometeor., 12, 10241039, doi:10.1175/2011JHM1339.1.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., , and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar.Cambridge University Press, 636 pp.

  • Brunner, J. C., , S. A. Ackerman, , A. S. Bachmeier, , and R. M. Rabin, 2007: A quantitative analysis of the enhanced-V feature in relation to severe weather. Wea. Forecasting, 22, 853872, doi:10.1175/WAF1022.1.

    • Search Google Scholar
    • Export Citation
  • Calhoun, K. M., , D. R. MacGorman, , C. L. Ziegler, , and M. I. Biggerstaff, 2013: Evolution of lightning activity and storm charge relative to dual-doppler analysis of a high-precipitation supercell storm. Mon. Wea. Rev., 141, 21992223, doi:10.1175/MWR-D-12-00258.1.

    • Search Google Scholar
    • Export Citation
  • Caylor, I. J., , and V. Chandrasekar, 1996: Time-varying ice crystal orientation in thunderstorms observed with multiparameter radar. IEEE Trans. Geosci. Remote Sens., 34, 847858, doi:10.1109/36.508402.

    • Search Google Scholar
    • Export Citation
  • Connolly, P. J., , C. P. R. Saunders, , M. W. Gallagher, , K. N. Bower, , M. J. Flynn, , T. W. Choularton, , J. Whiteway, , and R. P. Lawson, 2005: Aircraft observations of the influence of electric fields on the aggregation of ice crystals. Quart. J. Roy. Meteor. Soc., 131, 16951712, doi:10.1256/qj.03.217.

    • Search Google Scholar
    • Export Citation
  • Crum, T. D., , and R. L. Alberty, 1993: The WSR-88D and the WSR-88D operational support facility. Bull. Amer. Meteor. Soc., 74, 16691687, doi:10.1175/1520-0477(1993)074<1669:TWATWO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cunningham, J. G., , W. D. Zittel, , R. R. Lee, , and R. L. Ice, 2013: Methods for identifying systematic differential reflectivity (ZDR) biases on the operational WSR-88D network. 36th Conf. on Radar Meteorology, Breckenridge, CO, Amer. Meteor. Soc., 9B.5. [Available online at https://ams.confex.com/ams/36Radar/webprogram/Paper228792.html.]

  • Deierling, W., , and W. A. Petersen, 2008: Total lightning activity as an indicator of updraft characteristics. J. Geophys. Res.,113, D16210, doi:10.1029/2007JD009598.

  • Deierling, W., , W. A. Petersen, , J. Latham, , S. Ellis, , and H. J. Christian, 2008: The relationship between lightning activity and ice fluxes in thunderstorms. J. Geophys. Res.,113, D15210, doi:10.1029/2007JD009700.

  • Dessler, A. E., , and S. C. Sherwood, 2004: Effect of convection on the summertime extratropical lower stratosphere. J. Geophys. Res.,109, D23301, doi:10.1029/2004JD005209.

  • Dolan, B., , and S. A. Rutledge, 2010: Using CASA IP1 to diagnose kinematic and microphysical interactions in a convective storm. Mon. Wea. Rev., 138, 16131634, doi:10.1175/2009MWR3016.1.

    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., , and D. S. Zrnić, 1993: Doppler Radar and Weather Observations. 2nd ed. Dover Publications, 562 pp.

  • Doviak, R. J., , D. S. Zrnić, , J. Carter, , A. Ryzhkov, , S. Torres, , and A. Zahrai, 1998: NOAA/NSSL’s WSR-88D radar for research and enhancement of operations: Polarimetric upgrades to improve rainfall measurements. NSSL Tech. Rep. 110 pp. [Available online at http://www.nssl.noaa.gov/publications/wsr88d_reports/2pol_upgrades.pdf.]

  • Dworak, R., , K. Bedka, , J. Brunner, , and W. Feltz, 2012: Comparison between GOES-12 overshooting-top detections, WSR-88D radar reflectivity, and severe storm reports. Wea. Forecasting, 27, 684699, doi:10.1175/WAF-D-11-00070.1.

    • Search Google Scholar
    • Export Citation
  • Feng, Z., , X. Dong, , B. Xi, , C. Schumacher, , P. Minnis, , and M. Khaiyer, 2011: Top-of-atmosphere radiation budget of convective core/stratiform rain and anvil clouds from deep convective systems. J. Geophys. Res.,116, D23202, doi:10.1029/2011JD016451.

  • Fischer, H., and et al. , 2003: Deep convective injection of boundary layer air into the lowermost stratosphere at midlatitudes. Atmos. Chem. Phys., 3, 739745, doi:10.5194/acp-3-739-2003.

    • Search Google Scholar
    • Export Citation
  • Forster, P. M. F., , and K. P. Shine, 1999: Stratospheric water vapour changes as a possible contributor to observed stratospheric cooling. Geophys. Res. Lett., 26, 33093312, doi:10.1029/1999GL010487.

    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1982: Principle of stereoscopic height computations and their applications to stratospheric cirrus over severe thunderstorms. J. Meteor. Soc. Japan, 60, 355368.

    • Search Google Scholar
    • Export Citation
  • Gayet, J.-F., and et al. , 2012: On the observation of unusual high concentration of small chain-like aggregate ice crystals and large ice water contents near the top of a deep convective cloud during the CIRCLE-2 experiment. Atmos. Chem. Phys., 12, 727744, doi:10.5194/acp-12-727-2012.

    • Search Google Scholar
    • Export Citation
  • Hanisco, T. F., and et al. , 2007: Observations of deep convective influence on stratospheric water vapor and its isotopic composition. Geophys. Res. Lett.,34, L04814, doi:10.1029/2006GL027899.

  • Hegglin, M. I., and et al. , 2004: Tracing troposphere-to-stratosphere transport above a mid-latitude deep convective system. Atmos. Chem. Phys., 4, 741756, doi:10.5194/acp-4-741-2004.

    • Search Google Scholar
    • Export Citation
  • Herzegh, P. H., , and R. E. Carbone, 1984: The influence of antenna illumination function characteristics on differential reflectivity measurements. Preprints, 22nd Conf. on Radar Meteorology, Zurich, Switzerland, Amer. Meteor. Soc., 281–286.

  • Herzegh, P. H., , and A. R. Jameson, 1992: Observing precipitation through dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 73, 13651374, doi:10.1175/1520-0477(1992)073<1365:OPTDPR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R., 2014: Formation of the enhanced-V infrared cloud-top feature from high-resolution three-dimensional radar observations. J. Atmos. Sci., 71, 332348, doi:10.1175/JAS-D-13-079.1.

    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R., , K. P. Bowman, , and L. L. Pan, 2010: Extratropical tropopause transition layer characteristics from high-resolution sounding data. J. Geophys. Res.,115, D13108, doi:10.1029/2009JD013664.

  • Homeyer, C. R., , L. L. Pan, , and M. C. Barth, 2014a: Transport from convective overshooting of the extratropical tropopause and the role of large-scale lower stratosphere stability. J. Geophys. Res. Atmos., 119, 22202240, doi:10.1002/2013JD020931.

    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R., and et al. , 2014b: Convective transport of water vapor into the lower stratosphere observed during double-tropopause events. J. Geophys. Res. Atmos., 119, 10 941–10 958, doi:10.1002/2014JD021485.

    • Search Google Scholar
    • Export Citation
  • Hubbert, J. C., , V. N. Bringi, , L. D. Carey, , and S. Bolen, 1998: CSU-CHILL polarimetric radar measurements from a severe hail storm in eastern Colorado. J. Appl. Meteor., 37, 749775, doi:10.1175/1520-0450(1998)037<0749:CCPRMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hubbert, J. C., , V. N. Bringi, , and D. Brunkow, 2003: Studies of the polarimetric covariance matrix. Part I: Calibration methodology. J. Atmos. Oceanic Technol., 20, 696706, doi:10.1175/1520-0426(2003)20<696:SOTPCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knight, C. A., , and N. C. Knight, 1973: Conical graupel. J. Atmos. Sci., 30, 118124, doi:10.1175/1520-0469(1973)030<0118:CG>2.0.CO;2.

  • Kumjian, M. R., 2013a: Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar variables. J. Oper. Meteor., 1, 226242, doi:10.15191/nwajom.2013.0119.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013b: Principles and applications of dual-polarization weather radar. Part II: Warm and cold season applications. J. Oper. Meteor., 1, 243264, doi:10.15191/nwajom.2013.0120.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013c: Principles and applications of dual-polarization weather radar. Part III: Artifacts. J. Oper. Meteor., 1, 265274, doi:10.15191/nwajom.2013.0121.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., , and A. V. Ryzhkov, 2008: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47, 19401961, doi:10.1175/2007JAMC1874.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., , and A. V. Ryzhkov, 2012: The impact of size sorting on the polarimetric radar variables. J. Atmos. Sci., 69, 20422060, doi:10.1175/JAS-D-11-0125.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., , A. P. Khain, , N. Benmoshe, , E. Ilotoviz, , A. V. Ryzhkov, , and V. T. J. Phillips, 2014: The anatomy and physics of ZDR columns: Investigating a polarimetric radar signature with a spectral bin microphysical model. J. Appl. Meteor. Climatol., 53, 18201843, doi:10.1175/JAMC-D-13-0354.1.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., , and R. D. Sharman, 2006: Gravity wave breaking, secondary wave generation, and mixing above deep convection in a three-dimensional cloud model. Geophys. Res. Lett.,33, L23813, doi:10.1029/2006GL027988.

  • Lane, T. P., , R. D. Sharman, , T. L. Clark, , and H.-M. Hsu, 2003: An investigation of turbulence generation mechanisms above deep convection. J. Atmos. Sci., 60, 12971321, doi:10.1175/1520-0469(2003)60<1297:AIOTGM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J., , and S. A. Rutledge, 2008: Kinematic, microphysical, and electrical aspects of an asymmetric bow-echo mesoscale convective system observed during STEPS 2000. J. Geophys. Res.,113, D08213, doi:10.1029/2006JD007709.

  • Langston, C., , J. Zhang, , and K. Howard, 2007: Four-dimensional dynamic radar mosaic. J. Atmos. Oceanic Technol., 24, 776790, doi:10.1175/JTECH2001.1.

    • Search Google Scholar
    • Export Citation
  • Levizzani, V., , and M. Setvák, 1996: Multispectral, high-resolution satellite observations of plumes on top of convective storms. J. Atmos. Sci., 53, 361369, doi:10.1175/1520-0469(1996)053<0361:MHRSOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Luderer, G., , J. Trentmann, , K. Hungershöfer, , M. Herzog, , M. Fromm, , and M. O. Andreae, 2007: Small-scale mixing processes enhancing troposphere-to-stratosphere transport by pyro-cumulonimbus storms. Atmos. Chem. Phys., 7, 59455957, doi:10.5194/acp-7-5945-2007.

    • Search Google Scholar
    • Export Citation
  • McCann, D. W., 1983: The enhanced-V: A satellite observable severe storm signature. Mon. Wea. Rev., 111, 887894, doi:10.1175/1520-0493(1983)111<0887:TEVASO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Melnikov, V. M., , D. S. Zrnić, , R. J. Doviak, , and J. K. Carter, 2003: Calibration and performance analysis of NSSL’s polarimetric WSR-88D. NSSL Tech Rep., 77 pp. [Available online at http://www.nssl.noaa.gov/publications/wsr88d_reports/Calibration_and_Performance_Analysis.pdf.]

  • Melnikov, V. M., , R. J. Doviak, , D. S. Zrnić, , and D. J. Stensrud, 2011: Mapping Bragg scatter with a polarimetric WSR-88D. J. Atmos. Oceanic Technol., 28, 12731285, doi:10.1175/JTECH-D-10-05048.1.

    • Search Google Scholar
    • Export Citation
  • Melnikov, V. M., , R. J. Doviak, , D. S. Zrnić, , and D. J. Stensrud, 2013a: Structures of Bragg scatter observed with the polarimetric WSR-88D. J. Atmos. Oceanic Technol., 30, 12531258, doi:10.1175/JTECH-D-12-00210.1.

    • Search Google Scholar
    • Export Citation
  • Melnikov, V. M., , D. S. Zrnić, , M. Schmidt, , and R. Murnan, 2013b: ZDR calibration issues in the WSR-88Ds. NSSL Tech. Rep., 55 pp. [Available online at http://www.nssl.noaa.gov/publications/wsr88d_reports/WSR88D_ZDRcalib_Report_2013.pdf.]

  • Mullendore, G. L., , D. R. Durran, , and J. R. Holton, 2005: Cross-tropopause tracer transport in midlatitude convection. J. Geophys. Res.,110, D06113, doi:10.1029/2004JD005059.

  • Musil, D. J., , A. J. Heymsfield, , and P. L. Smith, 1986: Microphysical characteristics of a well-developed weak echo region in a high plains supercell thunderstorm. J. Climate Appl. Meteor., 25, 10371051, doi:10.1175/1520-0450(1986)025<1037:MCOAWD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Negri, A. J., 1982: Cloud-top structure of tornadic storms on 10 April 1979 from rapid scan and stereo satellite observations. Bull. Amer. Meteor. Soc., 63, 11511159.

    • Search Google Scholar
    • Export Citation
  • Pointin, Y., , D. Ramond, , and J. Fournet-Fayard, 1988: Radar differential reflectivity ZDR: A real-case evaluation of errors induced by antenna characteristics. J. Atmos. Oceanic Technol., 5, 416423, doi:10.1175/1520-0426(1988)005<0416:RDRARC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ray, E. A., and et al. , 2004: Evidence of the effect of summertime midlatitude convection on the subtropical lower stratosphere from CRYSTAL-FACE tracer measurements. J. Geophys. Res.,109, D18304, doi:10.1029/2004JD004655.

  • Rowe, A. K., , S. A. Rutledge, , and T. J. Lang, 2011: Investigation of microphysical processes occurring in isolated convection during NAME. Mon. Wea. Rev., 139, 424443, doi:10.1175/2010MWR3494.1.

    • Search Google Scholar
    • Export Citation
  • Rowe, A. K., , S. A. Rutledge, , and T. J. Lang, 2012: Investigation of microphysical processes occurring in organized convection during NAME. Mon. Wea. Rev., 140, 21682187, doi:10.1175/MWR-D-11-00124.1.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., 2007: The impact of beam broadening on the quality of radar polarimetric data. J. Atmos. Oceanic Technol., 24, 729744, doi:10.1175/JTECH2003.1.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., , and D. S. Zrnić, 2007: Depolarization in ice crystals and its effect on radar polarimetric measurements. J. Atmos. Oceanic Technol., 24, 12561267, doi:10.1175/JTECH2034.1.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., , S. E. Giangrande, , V. M. Melnikov, , and T. J. Schuur, 2005a: Calibration issues of dual-polarization radar measurements. J. Atmos. Oceanic Technol., 22, 11381155, doi:10.1175/JTECH1772.1.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., , S. E. Giangrande, , and T. J. Schuur, 2005b: Rainfall estimation with a polarimetric prototype of WSR-88D. J. Appl. Meteor., 44, 502515, doi:10.1175/JAM2213.1.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., , T. J. Schuur, , D. W. Burgess, , P. L. Heinselman, , S. E. Giangrande, , and D. S. Zrnić, 2005c: The Joint Polarization Experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull. Amer. Meteor. Soc., 86, 809824, doi:10.1175/BAMS-86-6-809.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., , M. R. Kumjian, , S. M. Ganson, , and P. Zhang, 2013: Polarimetric radar characteristics of melting hail. Part II: Practical implications. J. Appl. Meteor. Climatol., 52, 2871–2886, doi:10.1175/JAMC-D-13-074.1.

    • Search Google Scholar
    • Export Citation
  • Schmetz, J., , S. A. Tjemkes, , M. Gube, , and L. van de Berg, 1997: Monitoring deep convection and convective overshooting with METEOSAT. Adv. Space Res., 19, 433441, doi:10.1016/S0273-1177(97)00051-3.

    • Search Google Scholar
    • Export Citation
  • Setvák, M., , and C. A. Doswell III, 1991: The AVHRR channel 3 cloud top reflectivity of convective storms. Mon. Wea. Rev., 119, 841847, doi:10.1175/1520-0493(1991)119<0841:TACCTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Setvák, M., and et al. , 2010: Satellite-observed cold-ring-shaped features atop deep convective clouds. Atmos. Res., 97, 8096, doi:10.1016/j.atmosres.2010.03.009.

    • Search Google Scholar
    • Export Citation
  • Setvák, M., , K. Bedka, , D. T. Lindsey, , A. Sokol, , Z. Charvát, , J. Št'ástka, , and P. K. Wang, 2013: A-Train observations of deep convective storm tops. Atmos. Res., 123, 229248, doi:10.1016/j.atmosres.2012.06.020.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., , K. H. Rosenlof, , R. W. Portmann, , J. S. Daniel, , S. M. Davis, , T. J. Sanford, , and G.-K. Plattner, 2010: Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 327, 12191223, doi:10.1126/science.1182488.

    • Search Google Scholar
    • Export Citation
  • Stith, J. L., and et al. , 2014: Ice particles in the upper anvil regions of midlatitude continental thunderstorms: The case for frozen-drop aggregates. Atmos. Chem. Phys., 14, 19731985, doi:10.5194/acp-14-1973-2014.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., , D. S. Zrnić, , and A. V. Ryzhkov, 2000: Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteor., 39, 13411372, doi:10.1175/1520-0450(2000)039<1341:BHCAQU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tessendorf, S. A., , K. C. Wiens, , and S. A. Rutledge, 2007: Radar and lightning observations of the 3 June 2000 electrically inverted storm from STEPS. Mon. Wea. Rev., 135, 36653681, doi:10.1175/2006MWR1953.1.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., , and C. A. Doswell III, 2000: Radar data objective analysis. J. Atmos. Oceanic Technol., 17, 105120, doi:10.1175/1520-0426(2000)017<0105:RDOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ventura, J. F. I., , F. Honore, , and P. Tabary, 2013: X-band polarimetric weather radar observations of a hailstorm. J. Atmos. Oceanic Technol., 30, 21432151, doi:10.1175/JTECH-D-12-00243.1.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., , D. S. Zrnić, , S. M. Ellis, , R. Oye, , A. V. Ryzhkov, , and J. Straka, 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80, 381388, doi:10.1175/1520-0477(1999)080<0381:CMRUSB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, P. K., 2003: Moisture plumes above thunderstorm anvils and their contributions to cross-tropopause transport of water vapor in midlatitudes. J. Geophys. Res., 108, 4194, doi:10.1029/2002JD002581.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., , and R. A. Houze Jr., 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 19411963, doi:10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., , K. Howard, , and J. J. Gourley, 2005: Constructing three-dimensional multiple-radar reflectivity mosaics: Examples of convective storms and stratiform rain echoes. J. Atmos. Oceanic Technol., 22, 3042, doi:10.1175/JTECH-1689.1.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., , and A. V. Ryzhkov, 1999: Polarimetry for weather surveillance radars. Bull. Amer. Meteor. Soc., 80, 389406, doi:10.1175/1520-0477(1999)080<0389:PFWSR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., , V. N. Bringi, , N. Balakrishnan, , K. Aydin, , V. Chandrasekar, , and J. Hubbert, 1993: Polarimetric measurements in a severe hailstorm. Mon. Wea. Rev., 121, 22232238, doi:10.1175/1520-0493(1993)121<2223:PMIASH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 119 119 21
PDF Downloads 118 118 18

Microphysical Characteristics of Overshooting Convection from Polarimetric Radar Observations

View More View Less
  • 1 National Center for Atmospheric Research,* Boulder, Colorado, and School of Meteorology, University of Oklahoma, Norman, Oklahoma
  • | 2 National Center for Atmospheric Research,* Boulder, Colorado, and Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania
© Get Permissions
Restricted access

Abstract

The authors present observations of the microphysical characteristics of deep convection that overshoots the altitude of the extratropical tropopause from analysis of the polarimetric radar variables of radar reflectivity factor at horizontal polarization ZH, differential reflectivity ZDR, and specific differential phase KDP. Identified overshooting convective storms are separated by their organization and intensity into three classifications: organized convection, discrete ordinary convection, and discrete supercell convection. Composite analysis of identified storms for each classification reveals microphysical features similar to those found in previous studies of deep convection, with deep columns of highly positive ZDR and KDP representing lofting of liquid hydrometeors within the convective updraft and above the melting level. In addition, organized and discrete supercell classifications show distinct near-zero ZDR minima aligned horizontally with and at altitudes higher than the updraft column features, likely indicative of the frequent presence of large hail in each case. Composites for organized convective systems show a similar ZDR minimum throughout the portion of the convective core that is overshooting the tropopause, corresponding to ZH in the range of 15–30 dBZ and negative KDP observations, in agreement with the scattering properties of small hail and/or lump or conical graupel. Additional analyses of the evolution of overshooting storms reveals that the ZDR minima indicative of hail in the middle and upper troposphere and graupel in the overshooting top are associated with the mature and decaying stages of overshooting, respectively, supporting their inferred contributions to the observed polarimetric fields.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Cameron Homeyer, School of Meteorology, University of Oklahoma, 120 David L. Boren Blvd., Suite 5900, Norman, OK 73072. E-mail: chomeyer@ou.edu

Abstract

The authors present observations of the microphysical characteristics of deep convection that overshoots the altitude of the extratropical tropopause from analysis of the polarimetric radar variables of radar reflectivity factor at horizontal polarization ZH, differential reflectivity ZDR, and specific differential phase KDP. Identified overshooting convective storms are separated by their organization and intensity into three classifications: organized convection, discrete ordinary convection, and discrete supercell convection. Composite analysis of identified storms for each classification reveals microphysical features similar to those found in previous studies of deep convection, with deep columns of highly positive ZDR and KDP representing lofting of liquid hydrometeors within the convective updraft and above the melting level. In addition, organized and discrete supercell classifications show distinct near-zero ZDR minima aligned horizontally with and at altitudes higher than the updraft column features, likely indicative of the frequent presence of large hail in each case. Composites for organized convective systems show a similar ZDR minimum throughout the portion of the convective core that is overshooting the tropopause, corresponding to ZH in the range of 15–30 dBZ and negative KDP observations, in agreement with the scattering properties of small hail and/or lump or conical graupel. Additional analyses of the evolution of overshooting storms reveals that the ZDR minima indicative of hail in the middle and upper troposphere and graupel in the overshooting top are associated with the mature and decaying stages of overshooting, respectively, supporting their inferred contributions to the observed polarimetric fields.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Cameron Homeyer, School of Meteorology, University of Oklahoma, 120 David L. Boren Blvd., Suite 5900, Norman, OK 73072. E-mail: chomeyer@ou.edu
Save