• Agudelo, P. A., , J. A. Curry, , C. D. Hoyos, , and P. J. Webster, 2006: Transition between suppressed and active phases of intraseasonal oscillations in the Indo-Pacific warm pool. J. Climate, 19, 55195530, doi:10.1175/JCLI3924.1.

    • Search Google Scholar
    • Export Citation
  • Barnes, H. C., , and R. A. Houze Jr., 2013: The precipitating cloud population of the Madden–Julian Oscillation over the Indian and west Pacific Oceans. J. Geophys. Res. Atmos., 118, 69967023, doi:10.1002/jgrd.50375.

    • Search Google Scholar
    • Export Citation
  • Bellenger, H., , and J. P. Duvel, 2012: The event-to-event variability of the boreal winter MJO. Geophys. Res. Lett., 39, L08701, doi:10.1029/2012GL051294.

    • Search Google Scholar
    • Export Citation
  • Bellenger, H., , Y. N. Takayabu, , T. Ushiyama, , and K. Yoneyama, 2010: Role of diurnal warm layers in the diurnal cycle of convection over the tropical Indian Ocean during MISMO. Mon. Wea. Rev., 138, 24262433, doi:10.1175/2010MWR3249.1.

    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., , and D. A. Randall, 2007: Observed characteristics of the MJO relative to maximum rainfall. J. Atmos. Sci., 64, 23322354, doi:10.1175/JAS3968.1.

    • Search Google Scholar
    • Export Citation
  • Cai, Q., , G. J. Zhang, , and T. Zhou, 2013: Impact of shallow convection on MJO simulation: A moist static energy and moisture budget analysis. J. Climate, 26, 24172431, doi:10.1175/JCLI-D-12-00127.1.

    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., and et al. , 2014: Quality-controlled upper-air sounding dataset for DYNAMO/CINDY/AMIE: Development and corrections. J. Atmos. Oceanic Technol., 31, 741764, doi:10.1175/JTECH-D-13-00165.1.

    • Search Google Scholar
    • Export Citation
  • Davison, J. L., , R. M. Rauber, , L. Di Girolamo, , and M. A. LeMone, 2013: A revised conceptual model of the tropical marine boundary layer. Part III: Bragg scattering layer statistical properties. J. Atmos. Sci., 70, 30473062, doi:10.1175/JAS-D-12-0323.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., , Y. Chen, , D. Kim, , and M.-S. Yao, 2012: The MJO transition from shallow to deep convection in CloudSat/CALIPSO data and GISS GCM simulations. J. Climate, 25, 37553770, doi:10.1175/JCLI-D-11-00384.1.

    • Search Google Scholar
    • Export Citation
  • Duvel, J. P., , H. Bellenger, , G. Bellon, , and M. Remaud, 2013: An event-by-event assessment of tropical intraseasonal perturbations for general circulation models. Climate Dyn., 40, 857873, doi:10.1007/s00382-012-1303-6.

    • Search Google Scholar
    • Export Citation
  • Feng, Z., , S. A. McFarlane, , C. Schumacher, , S. Ellis, , J. Comstock, , and N. Bharadwaj, 2014: Constructing a merged cloud–precipitation radar dataset for tropical convective clouds during the DYNAMO/AMIE experiment at Addu Atoll. J. Atmos. Oceanic Technol., 31, 10211042, doi:10.1175/JTECH-D-13-00132.1.

    • Search Google Scholar
    • Export Citation
  • Gottschalck, J., , P. E. Roundy, , C. J. Schreck III, , A. Vintzileos, , and C. Zhang, 2013: Large-scale atmospheric and oceanic conditions during the 2011–12 DYNAMO field campaign. Mon. Wea. Rev., 141, 41734196, doi:10.1175/MWR-D-13-00022.1.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., , and B. Stevens, 2013: Preconditioning deep convection with cumulus congestus. J. Atmos. Sci., 70, 448464, doi:10.1175/JAS-D-12-089.1.

    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., , and J. D. Neelin, 2009: Moisture vertical structure, column water vapor, and tropical deep convection. J. Atmos. Sci., 66, 16651683, doi:10.1175/2008JAS2806.1.

    • Search Google Scholar
    • Export Citation
  • Jensen, M. P., , and A. D. Del Genio, 2006: Factors limiting convective cloud-top height at the ARM Nauru Island climate facility. J. Climate, 19, 21052117, doi:10.1175/JCLI3722.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., , and P. E. Ciesielski, 2013: Structure and properties of Madden–Julian oscillations deduced from DYNAMO sounding arrays. J. Atmos. Sci., 70, 31573179, doi:10.1175/JAS-D-13-065.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., , T. M. Rickenbach, , S. A. Rutledge, , P. E. Ciesielski, , and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 23972418, doi:10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., , P. E. Ciesielski, , and J. A. Cotturone, 2001: Multiscale variability of the atmospheric mixed layer over the western Pacific warm pool. J. Atmos. Sci., 58, 27292749, doi:10.1175/1520-0469(2001)058<2729:MVOTAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Katsumata, M., , T. Ushiyama, , K. Yoneyama, , and Y. Fujiyoshi, 2008: Combined use of TRMM/PR and disdrometer data to correct reflectivity of ground-based radars. SOLA, 4, 101104, doi:10.2151/sola.2008-026.

    • Search Google Scholar
    • Export Citation
  • Katsumata, M., , H. Yamada, , H. Kubota, , Q. Moteki, , and R. Shirooka, 2013: Observed evolution of northward-propagating intraseasonal variation over the western Pacific: A case study in boreal early summer. Mon. Wea. Rev., 141, 690706, doi:10.1175/MWR-D-12-00011.1.

    • Search Google Scholar
    • Export Citation
  • Kemball-Cook, S., , and B. C. Weare, 2001: The onset of convection in the Madden–Julian oscillation. J. Climate, 14, 780793, doi:10.1175/1520-0442(2001)014<0780:TOOCIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kerns, B. W., , and S. S. Chen, 2014: Equatorial dry air intrusion and related synoptic variability in MJO initiation during DYNAMO. Mon. Wea. Rev., 142, 13261343, doi:10.1175/MWR-D-13-00159.1.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., , and Y. N. Takayabu, 2004: The development of organized convection associated with the MJO during TOGA COARE IOP: Trimodal characteristics. Geophys. Res. Lett., 31, L10101, doi:10.1029/2004GL019601.

    • Search Google Scholar
    • Export Citation
  • Kuang, Z., , and C. S. Bretherton, 2006: A mass-flux scheme view of a high-resolution simulation of a transition from shallow to deep cumulus convection. J. Atmos. Sci., 63, 18951909, doi:10.1175/JAS3723.1.

    • Search Google Scholar
    • Export Citation
  • Kumar, V. V., , C. Jakob, , A. Protat, , P. T. May, , and L. Davies, 2013: The four cumulus cloud modes and their progression during rainfall events: A C-band polarimetric radar perspective. J. Geophys. Res. Atmos., 118, 83758389, doi:10.1002/jgrd.50640.

    • Search Google Scholar
    • Export Citation
  • Laird, N. F., 2005: Humidity halo surrounding small cumulus clouds in a tropical environment. J. Atmos. Sci., 62, 34203425, doi:10.1175/JAS3538.1.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., , S. Tulich, , J. Lin, , and P. Zuidema, 2006: The mesoscale convection life cycle: Building block or prototype for large-scale tropical waves? Dyn. Atmos. Oceans, 42, 329, doi:10.1016/j.dynatmoce.2006.03.003.

    • Search Google Scholar
    • Export Citation
  • Masunaga, H., 2013: A satellite study of tropical moist convection and environmental variability: A moisture and thermal budget analysis. J. Atmos. Sci., 70, 24432464, doi:10.1175/JAS-D-12-0273.1.

    • Search Google Scholar
    • Export Citation
  • Nasuno, T., 2013: Forecast skill of Madden–Julian Oscillation events in a global nonhydrostatic model during the CINDY2011/DYNAMO observation period. SOLA, 9, 6973, doi:10.2151/sola.2013-016.

    • Search Google Scholar
    • Export Citation
  • Nishizawa, T., , N. Sugimoto, , I. Matsui, , and T. Takano, 2012: Development of two-wavelength high-spectral-resolution lidar and application to shipborne measurements. Proc. 26th Int. Laser Radar Conf., Porto Heli, Greece, 147–150.

  • Nitta, T., , and S. Esbensen, 1974: Heat and moisture budget analyses using BOMEX data. Mon. Wea. Rev., 102, 1728, doi:10.1175/1520-0493(1974)102<0017:HAMBAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Perry, K. D., , and P. V. Hobbs, 1996: Influences of isolated cumulus clouds on the humidity of their surroundings. J. Atmos. Sci., 53, 159174, doi:10.1175/1520-0469(1996)053<0159:IOICCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Powell, S. W., , and R. A. Houze Jr., 2013: The cloud population and onset of the Madden–Julian Oscillation over the Indian Ocean during DYNAMO-AMIE. J. Geophys. Res. Atmos., 118, 11 97911 995, doi:10.1002/2013JD020421.

    • Search Google Scholar
    • Export Citation
  • Rapp, A. D., , C. D. Kummerow, , and L. Fowler, 2011: Interactions between warm rain clouds and atmospheric preconditioning for deep convection in the tropics. J. Geophys. Res., 116, D23210, doi:10.1029/2011JD016143.

    • Search Google Scholar
    • Export Citation
  • Redelsperger, J.-L., , D. B. Parsons, , and F. Guichard, 2002: Recovery processes and factors limiting cloud-top height following the arrival of a dry intrusion observed during TOGA COARE. J. Atmos. Sci., 9, 24382457, doi:10.1175/1520-0469(2002)059<2438:RPAFLC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Riley, E. M., , B. E. Mapes, , and S. N. Tulich, 2011: Clouds associated with the Madden–Julian oscillation: A new perspective from CloudSat. J. Atmos. Sci., 68, 30323051, doi:10.1175/JAS-D-11-030.1.

    • Search Google Scholar
    • Export Citation
  • Rowe, A. K., , and R. A. Houze Jr., 2014: Microphysical characteristics of MJO convection over the Indian Ocean during DYNAMO. J. Geophys. Res. Atmos., 119, 25432554, doi:10.1002/2013JD020799.

    • Search Google Scholar
    • Export Citation
  • Ruppert, J. H., , and R. H. Johnson, 2015: Diurnally modulated cumulus moistening in the preonset stage of the Madden–Julian oscillation during DYNAMO. J. Atmos. Sci., doi:10.1175/JAS-D-14-0218.1, in press.

    • Search Google Scholar
    • Export Citation
  • Sakai, T., , T. Nagai, , M. Nakazato, , Y. Mano, , and T. Matsumura, 2003: Ice clouds and Asian dust studied with lidar measurements of particle extinction-to-backscatter ratio, particle depolarization, and water-vapor mixing ratio over Tsukuba. Appl. Opt., 42, 71037116, doi:10.1364/AO.42.007103.

    • Search Google Scholar
    • Export Citation
  • Sakai, T., , T. Nagai, , M. Nakazato, , T. Matsumura, , N. Orikasa, , and Y. Shoji, 2007: Comparisons of Raman lidar measurements of tropospheric water vapor profiles with radiosondes, hygrometers on the meteorological observation tower, and GPS at Tsukuba, Japan. J. Atmos. Oceanic. Technol., 24, 14071423, doi:10.1175/JTECH2056.1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., , P. E. Ciesielski, , and M. H. Zhang, 2008: Tropical cloud heating profiles: Analysis from KWAJEX. Mon. Wea. Rev., 136, 42894300, doi:10.1175/2008MWR2275.1.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., , R. A. Houze, , and S. E. Yuter, 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34, 19782007, doi:10.1175/1520-0450(1995)034<1978:CCOTDS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., , and G. N. Kiladis, 2002: Observations of a convectively coupled Kelvin wave in the eastern Pacific ITCZ. J. Atmos. Sci., 59, 3053, doi:10.1175/1520-0469(2002)059<0030:OOACCK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., K.-M. Lau, , and C.-H. Sui, 1996: Observation of a quasi-2-day wave during TOGA COARE. Mon. Wea. Rev., 124, 18921913, doi:10.1175/1520-0493(1996)124<1892:OOAQDW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., , J. Yokomori, , and K. Yoneyama, 2006: A diagnostic study on interactions between atmospheric thermodynamic structure and cumulus convection over the tropical western Pacific Ocean and over the Indochina Peninsula. J. Meteor. Soc. Japan, 84A, 151169, doi:10.2151/jmsj.84A.151.

    • Search Google Scholar
    • Export Citation
  • Telford J. W., , and P. B. Wagner, 1980: The dynamical and liquid water structure of the small cumulus as determined from its environment. Pure Appl. Geophys., 118, 935952, doi:10.1007/BF01593041.

    • Search Google Scholar
    • Export Citation
  • Thayer-Calder, K., , and D. A. Randall, 2009: The role of convective moistening in the Madden–Julian oscillation. J. Atmos. Sci., 66, 32973312, doi:10.1175/2009JAS3081.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1991: Climate diagnostics from global analyses: Conservation of mass in ECMWF analyses. J. Climate, 4, 707722, doi:10.1175/1520-0442(1991)004<0707:CDFGAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Waite, M. L., , and B. Khouider, 2010: The deepening of tropical convection by congestus preconditioning. J. Atmos. Sci., 67, 26012615, doi:10.1175/2010JAS3357.1.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., 2003: A shallow CISK, deep equilibrium mechanism for the interaction between large-scale convection and large-scale circulations in the tropics. J. Atmos. Sci., 60, 377392, doi:10.1175/1520-0469(2003)060<0377:ASCDEM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xu, W., , and S. Rutledge, 2014: Convective characteristics of the Madden–Julian Oscillation over the central Indian Ocean observed by shipborne radar during DYNAMO. J. Atmos. Sci., 71, 28592877, doi:10.1175/JAS-D-13-0372.1.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., , S. Esbensen, , and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, doi:10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yoneyama, K., , C. Zhang, , and C. N. Long, 2013: Tracking pulses of the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 94, 18711891, doi:10.1175/BAMS-D-12-00157.1.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., , R. A. Houze Jr., , E. A. Smith, , T. T. Wilheit, , and E. Zipser, 2005: Physical characterization of tropical oceanic convection observed in KWAJEX. J. Appl. Meteor., 44, 385415, doi:10.1175/JAM2206.1.

    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., , and D. L. Hartmann, 2009: Response of humidity and clouds to tropical deep convection. J. Climate, 22, 23892404, doi:10.1175/2008JCLI2452.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian Oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

  • Zhang, G. J., , and X. Song, 2009: Interaction of deep and shallow convection is key to Madden–Julian Oscillation simulation. Geophys. Res. Lett., 36, L09708, doi:10.1029/2009GL037340.

    • Search Google Scholar
    • Export Citation
  • Zuidema, P., 1998: The 600–800-mb minimum in tropical cloudiness observed during TOGA COARE. J. Atmos. Sci., 55, 22202228, doi:10.1175/1520-0469(1998)055<2220:TMMITC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zuidema, P., and et al. , 2012: On trade wind cumulus cold pools. J. Atmos. Sci., 69, 258280, doi:10.1175/JAS-D-11-0143.1.

  • Zuluaga, M. D., , and R. A. Houze, 2013: Evolution of the population of precipitating convective systems over the equatorial Indian Ocean in active phases of the Madden–Julian oscillation. J. Atmos. Sci., 70, 27132725, doi:10.1175/JAS-D-12-0311.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 48 48 11
PDF Downloads 34 34 7

Observation of Moisture Tendencies Related to Shallow Convection

View More View Less
  • 1 Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
  • | 2 National Institute for Environmental Studies, Tsukuba, Japan
  • | 3 Department of Earth Science, University of Toyama, Toyama, and Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
  • | 4 Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
© Get Permissions
Restricted access

Abstract

Tropospheric moisture is a key factor controlling the global climate and its variability. For instance, moistening of the lower troposphere is necessary to trigger the convective phase of a Madden–Julian oscillation (MJO). However, the relative importance of the processes controlling this moistening has yet to be quantified. Among these processes, the importance of the moistening by shallow convection is still debated. The authors use high-frequency observations of humidity and convection from the Research Vessel (R/V) Mirai that was located in the Indian Ocean ITCZ during the Cooperative Indian Ocean Experiment on Intraseasonal Variability/Dynamics of the MJO (CINDY/DYNAMO) campaign. This study is an initial attempt to directly link shallow convection to moisture variations within the lowest 4 km of the atmosphere from the convective scale to the mesoscale. Within a few tens of minutes and near shallow convection occurrences, moisture anomalies of 0.25–0.5 g kg−1 that correspond to tendencies on the order of 10–20 g kg−1 day−1 between 1 and 4 km are observed and are attributed to shallow convective clouds. On the scale of a few hours, shallow convection is associated with anomalies of 0.5–1 g kg−1 that correspond to tendencies on the order of 1–4 g kg−1 day−1 according to two independent datasets: lidar and soundings. This can be interpreted as the resultant mesoscale effect of the population of shallow convective clouds. Large-scale advective tendencies can be stronger than the moistening by shallow convection; however, the latter is a steady moisture supply whose importance can increase with the time scale. This evaluation of the moistening tendency related to shallow convection is ultimately important to develop and constrain numerical models.

Corresponding author address: Hugo Bellenger, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-Cho, Yokosuka-city, Kanagawa 237-0061, Japan. E-mail: hbellenger@jamstec.go.jp

This article is included in the DYNAMO/CINDY/AMIE/LASP: Processes, Dynamics, and Prediction of MJO Initiation special collection.

Abstract

Tropospheric moisture is a key factor controlling the global climate and its variability. For instance, moistening of the lower troposphere is necessary to trigger the convective phase of a Madden–Julian oscillation (MJO). However, the relative importance of the processes controlling this moistening has yet to be quantified. Among these processes, the importance of the moistening by shallow convection is still debated. The authors use high-frequency observations of humidity and convection from the Research Vessel (R/V) Mirai that was located in the Indian Ocean ITCZ during the Cooperative Indian Ocean Experiment on Intraseasonal Variability/Dynamics of the MJO (CINDY/DYNAMO) campaign. This study is an initial attempt to directly link shallow convection to moisture variations within the lowest 4 km of the atmosphere from the convective scale to the mesoscale. Within a few tens of minutes and near shallow convection occurrences, moisture anomalies of 0.25–0.5 g kg−1 that correspond to tendencies on the order of 10–20 g kg−1 day−1 between 1 and 4 km are observed and are attributed to shallow convective clouds. On the scale of a few hours, shallow convection is associated with anomalies of 0.5–1 g kg−1 that correspond to tendencies on the order of 1–4 g kg−1 day−1 according to two independent datasets: lidar and soundings. This can be interpreted as the resultant mesoscale effect of the population of shallow convective clouds. Large-scale advective tendencies can be stronger than the moistening by shallow convection; however, the latter is a steady moisture supply whose importance can increase with the time scale. This evaluation of the moistening tendency related to shallow convection is ultimately important to develop and constrain numerical models.

Corresponding author address: Hugo Bellenger, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-Cho, Yokosuka-city, Kanagawa 237-0061, Japan. E-mail: hbellenger@jamstec.go.jp

This article is included in the DYNAMO/CINDY/AMIE/LASP: Processes, Dynamics, and Prediction of MJO Initiation special collection.

Save