• Anderson, G., and et al. , 2007: Using the MODTRAN 5 radiative transfer algorithm with NASA satellite data: AIRS and SORCE. Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIII, S. S. Shen and P. E. Lewis, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 6565), 65651O, doi:10.1117/12.721184.

    • Search Google Scholar
    • Export Citation
  • Aumann, H. H., and et al. , 2003: AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing system. IEEE Trans. Geosci. Remote Sens., 41, 253264, doi:10.1109/TGRS.2002.808356.

    • Search Google Scholar
    • Export Citation
  • Baum, B., , P. Yang, , A. Heymsfield, , S. Platnick, , M. King, , Y. Hu, , and S. Bedka, 2005: Bulk scattering properties for the remote sensing of ice clouds. Part II: Narrowband models. J. Appl. Meteor., 44, 18961911, doi:10.1175/JAM2309.1.

    • Search Google Scholar
    • Export Citation
  • Baum, B., , P. Yang, , A. Heymsfield, , C. Schmitt, , Y. Xie, , A. Bansemer, , Y. Hu, , and Z. Zhang, 2011: Improvements in shortwave bulk scattering and absorption models for the remote sensing of ice clouds. J. Appl. Meteor. Climatol., 50, 10371056, doi:10.1175/2010JAMC2608.1.

    • Search Google Scholar
    • Export Citation
  • Bi, L., , and P. Yang, 2014: Accurate simulation of the optical properties of atmospheric ice crystals with the invariant imbedding T-matrix method. J. Quant. Spectrosc. Radiat. Transfer, 138, 1735, doi:10.1016/j.jqsrt.2014.01.013.

    • Search Google Scholar
    • Export Citation
  • Bi, L., , P. Yang, , G. Kattawar, , B. Baum, , Y. Hu, , D. Winker, , R. Brock, , and J. Lu, 2009a: Simulation of the color ratio associated with the backscattering of radiation by ice particles at the wavelengths of 0.532 and 1.064 μm. J. Geophys. Res., 114, D00H08, doi:10.1029/2009JD011759.

    • Search Google Scholar
    • Export Citation
  • Bi, L., , P. Yang, , G. Kattawar, , and R. Kahn, 2009b: Single-scattering properties of triaxial ellipsoidal particles for a size parameter range from the Rayleigh to geometric-optics regimes. Appl. Opt., 48, 114126, doi:10.1364/AO.48.000114.

    • Search Google Scholar
    • Export Citation
  • Blumstein, D., and et al. , 2004: IASI instrument: Technical overview and measured performances. Infrared Spaceborne Remote Sensing XII, M. Strojnik, Ed., International Society for Optical Engineering (SPIE Proceedings, Vol. 5543), 196–207, doi:10.1117/12.560907.

  • Bohren, C. F., , and D. R. Huffman, 2008: Absorption and Scattering of Light by Small Particles. Wiley, 530 pp.

  • Chang, F., , and Z. Li, 2005: A near-global climatology of single-layer and overlapped clouds and their optical properties retrieved from Terra/MODIS data using a new algorithm. J. Climate, 18, 47524771, doi:10.1175/JCLI3553.1.

    • Search Google Scholar
    • Export Citation
  • Chen, X., , X. Huang, , and X. Liu, 2013: Non-negligible effects of cloud vertical overlapping assumptions on longwave spectral fingerprinting studies. J. Geophys. Res. Atmos., 118, 73097320, doi:10.1002/jgrd.50562.

    • Search Google Scholar
    • Export Citation
  • Clough, S., , M. Shephard, , E. Mlawer, , J. Delamere, , M. Iacono, , K. Cady-Pereira, , S. Boukabara, , and P. Brown, 2005: Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Transfer, 91, 233244, doi:10.1016/j.jqsrt.2004.05.058.

    • Search Google Scholar
    • Export Citation
  • Cole, B., , P. Yang, , B. Baum, , J. Riedi, , L. Labonnote, , F. Thieuleux, , and S. Platnick, 2013: Comparison of PARASOL observations with polarized reflectances simulated using different ice habit mixtures. J. Appl. Meteor. Climatol., 52, 186196, doi:10.1175/JAMC-D-12-097.1.

    • Search Google Scholar
    • Export Citation
  • Comstock, J. M., and et al. , 2004: High clouds microphysical retrievals intercomparison. Proc. 14th ARM Science Team Meeting, Albuquerque, NM, U.S. Department of Energy, 9 pp.

  • Devasthale, A., , and M. Thomas, 2011: A global survey of aerosol-liquid water cloud overlap based on four years of CALIPSO-CALIOP data. Atmos. Chem. Phys., 11, 11431154, doi:10.5194/acp-11-1143-2011.

    • Search Google Scholar
    • Export Citation
  • Doutriaux-Boucher, M., , and P. Dubuisson, 2009: Detection of volcanic SO2 by spaceborne infrared radiometers. Atmos. Res., 92, 6979, doi:10.1016/j.atmosres.2008.08.009.

    • Search Google Scholar
    • Export Citation
  • Dubuisson, P., , J. C. Buriez, , and Y. Fouquart, 1996: High spectral resolution solar radiative transfer in absorbing and scattering media: Application to satellite simulation. J. Quant. Spectrosc. Radiat. Transfer, 55, 103126, doi:10.1016/0022-4073(95)00134-4.

    • Search Google Scholar
    • Export Citation
  • Dubuisson, P., , V. Giraud, , O. Chomette, , H. Chepfer, , and J. Pelon, 2005: Fast radiative transfer modeling for infrared imaging radiometry. J. Quant. Spectrosc. Radiat. Transfer, 95, 201220, doi:10.1016/j.jqsrt.2004.09.034.

    • Search Google Scholar
    • Export Citation
  • Dubuisson, P., , H. Herbin, , F. Minvielle, , M. Compiègne, , F. Thieuleux, , F. Parol, , and J. Pelon, 2014: Remote sensing of volcanic ash plumes from thermal infrared: A case study analysis from SEVIRI, MODIS and IASI instruments. Atmos. Meas. Tech., 7, 359371, doi:10.5194/amt-7-359-2014.

    • Search Google Scholar
    • Export Citation
  • Edwards, D. P., , and G. L. Francis, 2000: Improvements to the correlated-k radiative transfer method: Application to satellite infrared sounding. J. Geophys. Res., 105, 18 13518 156, doi:10.1029/2000JD900131.

    • Search Google Scholar
    • Export Citation
  • Foot, J. S., 1988: Some observations of the optical properties of clouds. II: Cirrus. Quart. J. Roy. Meteor. Soc., 114, 145164, doi:10.1002/qj.49711447908.

    • Search Google Scholar
    • Export Citation
  • Francis, P. N., , M. C. Cooke, , and R. Saunders, 2012: Retrieval of physical properties of volcanic ash using Meteosat: A case study from the 2010 Eyjafjallajökull eruption. J. Geophys. Res., 117, D00U09, doi:10.1029/2011JD016788.

    • Search Google Scholar
    • Export Citation
  • Garnier, A., , J. Pelon, , P. Dubuisson, , M. Faivre, , O. Chomette, , N. Pascal, , and D. P. Kratz, 2012: Retrieval of cloud properties using CALIPSO Imaging Infrared Radiometer. Part I: Effective emissivity and optical depth. J. Appl. Meteor. Climatol., 51, 14071425, doi:10.1175/JAMC-D-11-0220.1.

    • Search Google Scholar
    • Export Citation
  • Han, Y., , P. van Delst, , Q. Liu, , F. Weng, , B. Yan, , R. Treadon, , and J. Derber, 2006: Community Radiative Transfer Model (CRTM)—Version 1. NOAA NESDIS Tech. Rep. 122, 40 pp.

  • Hansen, J., , and J. Hovenier, 1971: The doubling method applied to multiple scattering of polarized light. J. Quant. Spectrosc. Radiat. Transfer, 11, 809812, doi:10.1016/0022-4073(71)90057-4.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., , and L. D. Travis, 1974: Light scattering in planetary atmospheres. Space Sci. Rev., 16, 527610, doi:10.1007/BF00168069.

  • Heidinger, A., , C. O’Dell, , R. Bennartz, , and T. Greenwald, 2006: The successive-order-of-interaction radiative transfer model. Part I: Model development. J. Appl. Meteor. Climatol., 45, 13881402, doi:10.1175/JAM2387.1.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A., 1975: Cirrus uncinus generating cells and evolution of cirriform clouds. Part III: Numerical computations of the growth of ice phase. J. Atmos. Sci., 32, 820830, doi:10.1175/1520-0469(1975)032<0820:CUGCAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A., , A. Bansemer, , P. Field, , S. Durden, , J. Stith, , J. Dye, , W. Hall, , and C. Grainger, 2002: Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns. J. Atmos. Sci., 59, 34573491, doi:10.1175/1520-0469(2002)059<3457:OAPOPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holz, R., , R. Kuehn, , M. Vaughan, , S. E. Platnick, , and P. Yang, 2011: Finding closure between V3 CALIOP and MODIS optical depth retrievals using IR observations. AGU Fall Meeting, San Francisco, CA, Amer. Geophys. Union, A23F-03.

  • Hsu, N., , S. Tsay, , M. King, , and J. Herman, 2006: Deep blue retrievals of Asian aerosol properties during ACE-Asia. IEEE Trans. Geosci. Remote Sens., 44, 31803195, doi:10.1109/TGRS.2006.879540.

    • Search Google Scholar
    • Export Citation
  • Huang, Y., 2013: A simulated climatology of spectrally decomposed atmospheric infrared radiation. J. Climate, 26, 17021715, doi:10.1175/JCLI-D-12-00438.1.

    • Search Google Scholar
    • Export Citation
  • Huang, Y., , S. Leroy, , P. J. Gero, , J. Dykema, , and J. Anderson, 2010: Separation of longwave climate feedbacks from spectral observations. J. Geophys. Res., 115, D07104, doi:10.1029/2009JD012766.

    • Search Google Scholar
    • Export Citation
  • Iwabuchi, H., , S. Yamada, , S. Katagiri, , P. Yang, , and H. Okamoto, 2014: Radiative and microphysical properties of cirrus cloud inferred from infrared measurements made by the Moderate Resolution Imaging Spectroradiometer (MODIS). Part I: Retrieval method. J. Appl. Meteor. Climatol., 53, 12971316, doi:10.1175/JAMC-D-13-0215.1.

    • Search Google Scholar
    • Export Citation
  • Jin, H., , and S. L. Nasiri, 2014: Evaluation of AIRS cloud-thermodynamic-phase determination with CALIPSO. J. Appl. Meteor. Climatol., 53, 10121027, doi:10.1175/JAMC-D-13-0137.1.

    • Search Google Scholar
    • Export Citation
  • Kahn, B. H., , A. Eldering, , M. Ghil, , S. Bordoni, , and S. A. Clough, 2004: Sensitivity analysis of cirrus cloud properties from high-resolution infrared spectra. Part I: Methodology and synthetic cirrus. J. Climate, 17, 48564870, doi:10.1175/JCLI-3220.1.

    • Search Google Scholar
    • Export Citation
  • Kahn, B. H., and et al. , 2014: The Atmospheric Infrared Sounder version 6 cloud products. Atmos. Chem. Phys., 14, 399426, doi:10.5194/acp-14-399-2014.

    • Search Google Scholar
    • Export Citation
  • Kato, S., , S. Sun-Mack, , W. Miller, , F. Rose, , Y. Chen, , P. Minnis, , and B. Wielicki, 2010: Relationships among cloud occurrence frequency, overlap, and effective thickness derived from CALIPSO and CloudSat merged cloud vertical profiles. J. Geophys. Res., 115, D00H28, doi:10.1029/2009JD012277.

    • Search Google Scholar
    • Export Citation
  • Kaufman, Y., and et al. , 1997: Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect. J. Geophys. Res., 102, 16 81516 830, doi:10.1029/97JD01496.

    • Search Google Scholar
    • Export Citation
  • Kokhanovsky, A., and et al. , 2010: The inter-comparison of major satellite aerosol retrieval algorithms using simulated intensity and polarization characteristics of reflected light. Atmos. Meas. Tech., 3, 909932, doi:10.5194/amt-3-909-2010.

    • Search Google Scholar
    • Export Citation
  • Kratz, D. P., 1995: The correlated k-distribution technique as applied to the AVHRR channels. J. Quant. Spectrosc. Radiat. Transfer, 53, 501517, doi:10.1016/0022-4073(95)90050-0.

    • Search Google Scholar
    • Export Citation
  • Lenoble, J., , M. Herman, , J. Deuzé, , B. Lafrance, , R. Santer, , and D. Tanré, 2007: A successive order of scattering code for solving the vector equation of transfer in the earth’s atmosphere with aerosols. J. Quant. Spectrosc. Radiat. Transfer, 107, 479507, doi:10.1016/j.jqsrt.2007.03.010.

    • Search Google Scholar
    • Export Citation
  • Leroy, S., , J. Anderson, , J. Dykema, , and R. Goody, 2008: Testing climate models using thermal infrared spectra. J. Climate, 21, 18631875, doi:10.1175/2007JCLI2061.1.

    • Search Google Scholar
    • Export Citation
  • Levy, R. C., 2009: The dark-land MODIS collection 5 aerosol retrieval: Algorithm development and product evaluation. Satellite Aerosol Remote Sensing over Land, A. A. Kokhanovsky, G. de Leeuw, Eds., Springer Praxis, 19–68, doi:10.1007/978-3-540-69397-0_2.

  • Liou, K. N., , Q. Fu, , and T. P. Ackerman, 1988: A simple formulation of the delta-four-stream approximation for radiative transfer parameterizations. J. Atmos. Sci., 45, 19401947, doi:10.1175/1520-0469(1988)045<1940:ASFOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liou, K. N., , S. C. Ou, , Y. Takano, , and Q. Liu, 2005: A polarized delta-four-stream approximation for infrared and microwave radiative transfer: Part I. J. Atmos. Sci., 62, 25422554, doi:10.1175/JAS3476.1.

    • Search Google Scholar
    • Export Citation
  • Liu, C., , R. Panetta, , and P. Yang, 2013: The effects of surface roughness on the scattering properties of hexagonal columns with sizes from the Rayleigh to the geometric optics regimes. J. Quant. Spectrosc. Radiat. Transfer, 129, 169185, doi:10.1016/j.jqsrt.2013.06.011.

    • Search Google Scholar
    • Export Citation
  • Liu, X., , W. L. Smith, , D. K. Zhou, , and A. Larar, 2006: Principal component-based radiative transfer model for hyperspectral sensors: Theoretical concept. Appl. Opt., 45, 201209, doi:10.1364/AO.45.000201.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., , J. Key, , S. Ackerman, , G. Mace, , and Q. Zhang, 2012: Arctic cloud macrophysical characteristics from CloudSat and CALIPSO. Remote Sens. Environ., 124, 159173, doi:10.1016/j.rse.2012.05.006.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., , Q. Zhang, , M. Vaughan, , R. Marchand, , G. Stephens, , C. Trepte, , and D. Winker, 2009: A description of hydrometeor layer occurrence statistics derived from the first year of merged CloudSat and CALIPSO data. J. Geophys. Res., 114, D00A26, doi:10.1029/2007JD009755.

    • Search Google Scholar
    • Export Citation
  • McClatchey, R. A., , R. W. Fenn, , J. E. A. Salby, , F. E. Volz, , and J. S. Garing, 1972: Optical Properties of the Atmosphere. Air Force Cambridge Research Laboratory Tech. Rep. AFCRL-72-0497, 108 pp. [Available online at http://www.dtic.mil/dtic/tr/fulltext/u2/753075.pdf.]

  • Meng, Z., , P. Yang, , G. Kattawar, , L. Bi, , K. Liou, , and I. Laszlo, 2010: Single-scattering properties of tri-axial ellipsoidal mineral dust aerosols: A database for application to radiative transfer calculations. J. Aerosol Sci., 41, 501512, doi:10.1016/j.jaerosci.2010.02.008.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M., , L. Travis, , R. Kahn, , and R. West, 1997: Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids. J. Geophys. Res., 102, 16 83116 847, doi:10.1029/96JD02110.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M., , J. Hovenier, , and L. D. Travis, Eds., 2000: Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications. Academic Press, 690 pp.

  • Mishchenko, M., , L. D. Travis, , and A. A. Lacis, 2002: Scattering, Absorption, and Emission of Light by Small Particles. Cambridge University Press, 445 pp.

  • Niu, J., , P. Yang, , H. Huang, , J. Davies, , J. Li, , B. Baum, , and Y. Hu, 2007: A fast infrared radiative transfer model for overlapping clouds. J. Quant. Spectrosc. Radiat. Transfer, 103, 447459, doi:10.1016/j.jqsrt.2006.05.009.

    • Search Google Scholar
    • Export Citation
  • Otto, S., , M. de Reus, , T. Trautmann, , A. Thomas, , M. Wendisch, , and S. Borrmann, 2007: Atmospheric radiative effects of an in situ measured Saharan dust plume and the role of large particles. Atmos. Chem. Phys., 7, 48874903, doi:10.5194/acp-7-4887-2007.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., , M. King, , S. Ackerman, , W. Menzel, , B. Baum, , J. Riedi, , and R. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41, 459473, doi:10.1109/TGRS.2002.808301.

    • Search Google Scholar
    • Export Citation
  • Poulsen, C. A., and et al. , 2011: Cloud retrievals from satellite data using optimal estimation: evaluation and application to ATSR. Atmos Meas. Tech. Discuss., 4, 23892431, doi:10.5194/amtd-4-2389-2011.

    • Search Google Scholar
    • Export Citation
  • Protat, A., , A. Armstrong, , M. Haeffelin, , Y. Morille, , J. Pelon, , J. Delanoe, , and D. Bouniol, 2006: Impact of conditional sampling and instrumental limitations on the statistics of cloud properties derived from cloud radar and lidar at SIRTA. Geophys. Res. Lett., 33, L11805, doi:10.1029/2005GL025340.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and et al. , 2008: The GEOS-5 data assimilation system—Documentation of versions 5.0.1, 5.1.0, and 5.2.0. NASA Tech. Rep. NASA/TM–2008–104606, Vol. 27, 102 pp. [Available online at http://gmao.gsfc.nasa.gov/pubs/docs/Rienecker369.pdf.]

  • Sassen, K., , and B. S. Cho, 1992: Subvisual-thin cirrus lidar dataset for satellite verification and climatological research. J. Appl. Meteor., 31, 12751285, doi:10.1175/1520-0450(1992)031<1275:STCLDF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saunders, R., , M. Matricardi, , and P. Brunel, 1999: An improved fast radiative transfer model for assimilation of satellite radiance observations. Quart. J. Roy. Meteor. Soc., 125, 14071425, doi:10.1002/qj.1999.49712555615.

    • Search Google Scholar
    • Export Citation
  • Shi, G., , N. Xu, , B. A. Wang, , T. Dai, , and J. Q. Zhao, 2009: An improved treatment of overlapping absorption bands based on the correlated k distribution model for thermal infrared radiative transfer calculations. J. Quant. Spectrosc. Radiat. Transfer, 110, 435451, doi:10.1016/j.jqsrt.2009.01.008.

    • Search Google Scholar
    • Export Citation
  • Stamnes, K., , S. Tsay, , W. Wiscombe, , and K. Jayaweera, 1988: Numerically stable algorithm for discrete-ordinate-method radiative-transfer in multiple-scattering and emitting layered media. Appl. Opt., 27, 25022509, doi:10.1364/AO.27.002502.

    • Search Google Scholar
    • Export Citation
  • Stephens, G., and et al. , 2002: The CloudSat mission and the A-TRAIN: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83, 17711790, doi:10.1175/BAMS-83-12-1771.

    • Search Google Scholar
    • Export Citation
  • Stocker, T. F., and et al. , 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp. [Available online at http://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_ALL_FINAL.pdf.]

  • Twomey, S., , H. Jacobowitz, , and H. B. Howell, 1966: Matrix methods for multiple-scattering problems. J. Atmos. Sci., 23, 289298, doi:10.1175/1520-0469(1966)023<0289:MMFMSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, C., , P. Yang, , B. Baum, , S. Platnick, , A. Heidinger, , Y. Hu, , and R. Holz, 2011: Retrieval of ice cloud optical thickness and effective particle size using a fast infrared radiative transfer model. J. Appl. Meteor. Climatol., 50, 22832297, doi:10.1175/JAMC-D-11-067.1.

    • Search Google Scholar
    • Export Citation
  • Wang, C., , P. Yang, , S. Nasiri, , S. Platnick, , B. Baum, , A. Heidinger, , and X. Liu, 2013a: A fast radiative transfer model for visible through shortwave infrared spectral reflectances in clear and cloudy atmospheres. J. Quant. Spectrosc. Radiat. Transfer, 116, 122131, doi:10.1016/j.jqsrt.2012.10.012.

    • Search Google Scholar
    • Export Citation
  • Wang, C., , P. Yang, , S. Platnick, , A. Heidinger, , B. Baum, , T. Greenwald, , Z. Zhang, , and R. Holz, 2013b: Retrieval of ice cloud properties from AIRS and MODIS observations based on a fast high-spectral-resolution radiative transfer model. J. Appl. Meteor. Climatol., 52, 710726, doi:10.1175/JAMC-D-12-020.1.

    • Search Google Scholar
    • Export Citation
  • Wang, M., , and M. King, 1997: Correction of Rayleigh scattering effects in cloud optical thickness retrievals. J. Geophys. Res., 102, 25 91525 926, doi:10.1029/97JD02225.

    • Search Google Scholar
    • Export Citation
  • Wei, H., , P. Yang, , J. Li, , B. Baum, , H. Huang, , S. Platnick, , Y. Hu, , and L. Strow, 2004: Retrieval of semitransparent ice cloud optical thickness from atmospheric infrared sounder (AIRS) measurements. IEEE Trans. Geosci. Remote Sens., 42, 22542267, doi:10.1109/TGRS.2004.833780.

    • Search Google Scholar
    • Export Citation
  • Winker, D., and et al. , 2010: The CALIPSO mission: A global 3D view of aerosols and clouds. Bull. Amer. Meteor. Soc., 91, 12111229, doi:10.1175/2010BAMS3009.1.

    • Search Google Scholar
    • Export Citation
  • Yang, P., , and K. N. Liou, 1996: Geometric-Optics-integral-equation method for light scattering by nonspherical ice crystals. Appl. Opt., 35, 65686584, doi:10.1364/AO.35.006568.

    • Search Google Scholar
    • Export Citation
  • Yang, P., and et al. , 2007: Modeling of the scattering and radiative properties of nonspherical dust-like aerosols. J. Aerosol Sci., 38, 9951014, doi:10.1016/j.jaerosci.2007.07.001.

    • Search Google Scholar
    • Export Citation
  • Yang, P., , L. Bi, , B. Baum, , K. Liou, , G. Kattawar, , M. Mishchenko, , and B. Cole, 2013: Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 μm. J. Atmos. Sci., 70, 330347, doi:10.1175/JAS-D-12-039.1.

    • Search Google Scholar
    • Export Citation
  • Yi, B., , X. Huang, , P. Yang, , B. Baum, , and G. W. Kattawar, 2014: Considering polarization in MODIS-based cloud property retrievals by using a vector radiative transfer code. J. Quant. Spectrosc. Radiat. Transfer, 146, 540548, doi:10.1016/j.jqsrt.2014.05.020.

    • Search Google Scholar
    • Export Citation
  • Yue, Q., , and K. N. Liou, 2009: Cirrus cloud optical and microphysical properties determined from AIRS infrared spectra. Geophys. Res. Lett., 36, L05810, doi:10.1029/2008GL036502.

    • Search Google Scholar
    • Export Citation
  • Yurkin, M., , and A. Hoekstra, 2011: The discrete-dipole-approximation code ADDA: Capabilities and known limitations. J. Quant. Spectrosc. Radiat. Transfer, 112, 22342247, doi:10.1016/j.jqsrt.2011.01.031.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., and et al. , 2007: A fast infrared radiative transfer model based on the adding–doubling method for hyperspectral remote-sensing applications. J. Quant. Spectrosc. Radiat. Transfer, 105, 243263, doi:10.1016/j.jqsrt.2007.01.009.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 66 66 13
PDF Downloads 48 48 13

A High-Spectral-Resolution Radiative Transfer Model for Simulating Multilayered Clouds and Aerosols in the Infrared Spectral Region

View More View Less
  • 1 Department of Atmospheric Sciences, Texas A&M University, College Station, Texas
  • | 2 Science Directorate, NASA Langley Research Center, Hampton, Virginia
© Get Permissions
Restricted access

Abstract

A fast and flexible model is developed to simulate the transfer of thermal infrared radiation at wavenumbers from 700 to 1300 cm−1 with a spectral resolution of 0.1 cm−1 for scattering–absorbing atmospheres. In a single run and at multiple user-defined levels, the present model simulates radiances at different viewing angles and fluxes. Furthermore, the model takes into account complicated and realistic scenes in which ice cloud, water cloud, and mineral dust layers may coexist within an atmospheric column. The present model is compared to a rigorous reference model, the 32-stream Discrete Ordinate Radiative Transfer model (DISORT) code. For an atmosphere with three scattering layers (water, ice, and mineral dust), the root-mean-square error of the simulated brightness temperatures at the top of the atmosphere is approximately 0.05 K, and the relative flux errors at the boundary and internal levels are much smaller than 1%. Within the same computing environment, the fast model runs more than 10 000, 6000, and 4000 times faster than DISORT under single-layer, two-layer, and three-layer cloud–aerosol conditions, respectively. With its computational efficiency and accuracy, the present model may optimally facilitate the forward radiative transfer simulations involved in remote sensing implementations based on high-spectral-resolution and narrowband infrared measurements and in the data assimilation applications of the weather forecasting system. The selected 0.1-cm−1 spectral resolution is an obstacle to extending the present model to strongly absorptive bands (e.g., 600–700 cm−1). However, the present clear-sky module can be substituted by a more accurate model for specific applications involving spectral bands with strong absorption.

Corresponding author address: Prof. Ping Yang, Department of Atmospheric Sciences, Texas A&M University, College Station, TX 77843. E-mail: pyang@tamu.edu

Abstract

A fast and flexible model is developed to simulate the transfer of thermal infrared radiation at wavenumbers from 700 to 1300 cm−1 with a spectral resolution of 0.1 cm−1 for scattering–absorbing atmospheres. In a single run and at multiple user-defined levels, the present model simulates radiances at different viewing angles and fluxes. Furthermore, the model takes into account complicated and realistic scenes in which ice cloud, water cloud, and mineral dust layers may coexist within an atmospheric column. The present model is compared to a rigorous reference model, the 32-stream Discrete Ordinate Radiative Transfer model (DISORT) code. For an atmosphere with three scattering layers (water, ice, and mineral dust), the root-mean-square error of the simulated brightness temperatures at the top of the atmosphere is approximately 0.05 K, and the relative flux errors at the boundary and internal levels are much smaller than 1%. Within the same computing environment, the fast model runs more than 10 000, 6000, and 4000 times faster than DISORT under single-layer, two-layer, and three-layer cloud–aerosol conditions, respectively. With its computational efficiency and accuracy, the present model may optimally facilitate the forward radiative transfer simulations involved in remote sensing implementations based on high-spectral-resolution and narrowband infrared measurements and in the data assimilation applications of the weather forecasting system. The selected 0.1-cm−1 spectral resolution is an obstacle to extending the present model to strongly absorptive bands (e.g., 600–700 cm−1). However, the present clear-sky module can be substituted by a more accurate model for specific applications involving spectral bands with strong absorption.

Corresponding author address: Prof. Ping Yang, Department of Atmospheric Sciences, Texas A&M University, College Station, TX 77843. E-mail: pyang@tamu.edu
Save