• Bender, M. A., 1997: The effect of relative flow on the asymmetric structure in the interior of hurricanes. J. Atmos. Sci., 54, 703724, doi:10.1175/1520-0469(1997)054<0703:TEORFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., , and M. J. Miller, 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, and arctic air-mass data sets. Quart. J. Roy. Meteor. Soc., 112, 693709, doi:10.1002/qj.49711247308.

    • Search Google Scholar
    • Export Citation
  • Bryan, G., 2008: On the computation of pseudo-adiabatic entropy and equivalent potential temperature. Mon. Wea. Rev., 136, 52395245, doi:10.1175/2008MWR2593.1.

    • Search Google Scholar
    • Export Citation
  • Bu, Y., , R. Fovell, , and K. L. Corbosiero, 2014: Influence of cloud–radiative forcing on tropical cyclone structure. J. Atmos. Sci., 71, 1644–1662, doi:10.1175/JAS-D-13-0265.1.

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., , and J. Molinari, 2003: The relationship between storm motion, vertical wind shear, and convective asymmetries in tropical cyclones. J. Atmos. Sci., 60, 366376, doi:10.1175/1520-0469(2003)060<0366:TRBSMV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DeHart, J. C., , R. Houze Jr., , and R. F. Rogers, 2014: Quadrant distribution of tropical cyclone inner-core kinematics in relation to environmental shear. J. Atmos. Sci., 71, 2713–2732, doi:10.1175/JAS-D-13-0298.1.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585604, doi:10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 1994: Atmospheric Convection.Oxford, 580 pp.

  • Emanuel, K., 1997: Some aspects of hurricane inner-core dynamics and energetics. J. Atmos. Sci., 54, 10141026, doi:10.1175/1520-0469(1997)054<1014:SAOHIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., , K. L. Corbosiero, , A. Seifert, , and K. N. Liou, 2010: Impact of cloud-radiative processes on hurricane track. Geophys. Res. Lett., 37, L07808, doi:10.1029/2010GL042691.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, doi:10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hauf, T., , and H. Holler, 1987: Entropy and potential temperature. J. Atmos. Sci., 44, 28872901.

  • Hong, S. Y., , J. Dudhia, , and S. H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120, doi:10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., , Y. Noh, , and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 1995: The evolution of vortices in vertical shear. I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121, 821851, doi:10.1002/qj.49712152406.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 2000: The evolution of vortices in vertical shear. III: Baroclinic vortices. Quart. J. Roy. Meteor. Soc., 126, 31613185, doi:10.1002/qj.49712657009.

    • Search Google Scholar
    • Export Citation
  • Jordan, C., 1958: Mean soundings for the West Indies area. J. Meteor., 15, 9197, doi:10.1175/1520-0469(1958)015<0091:MSFTWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., , J. Frank, , and D. Vollaro, 2013: Convective bursts, downdraft cooling, and boundary layer recovery in a sheared tropical storm. Mon. Wea. Rev., 141, 10481060, doi:10.1175/MWR-D-12-00135.1.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M., , and R. Kallenbach, 1997: A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435465, doi:10.1002/qj.49712353810.

    • Search Google Scholar
    • Export Citation
  • Nolan, D., 2011: Evaluating environmental favorableness for tropical cyclone development with the method of point-downscaling. J. Adv. Model. Earth Syst., 3, M08001, doi:10.1029/2011MS000063.

    • Search Google Scholar
    • Export Citation
  • Pointin, Y., 1984: Wet equivalent potential temperature and enthalpy as prognostic variables in cloud modeling. J. Atmos. Sci., 41, 651660, doi:10.1175/1520-0469(1984)041<0651:WEPTAE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Qiu, X., , and Z.-M. Tan, 2013: The roles of asymmetric inflow forcing induced by outer rainbands in tropical cyclone secondary eyewall formation. J. Atmos. Sci., 70, 953974, doi:10.1175/JAS-D-12-084.1.

    • Search Google Scholar
    • Export Citation
  • Qiu, X., , Z.-M. Tan, , and Q. Xiao, 2010: The roles of vortex Rossby waves in hurricane secondary eyewall formation. Mon. Wea. Rev., 138, 20922109, doi:10.1175/2010MWR3161.1.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., , and M. T. Montgomery, 2001: Three-dimensional alignment and corotation of weak, TC-like vortices via linear vortex Rossby waves. J. Atmos. Sci., 58, 23062330, doi:10.1175/1520-0469(2001)058<2306:TDAACO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., , and M. D. Eastin, 2012: Rapidly intensifying Hurricane Guillermo (1997). Part II: Resilience in shear. Mon. Wea. Rev., 140, 425444, doi:10.1175/MWR-D-11-00080.1.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., , M. T. Montgomery, , and L. D. Grasso, 2004: A new look at the problem of tropical cyclones in vertical shear flow: Vortex resiliency. J. Atmos. Sci., 61, 322, doi:10.1175/1520-0469(2004)061<0003:ANLATP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., , M. Eastin, , and J. F. Gamache, 2009: Rapidly intensifying Hurricane Guillermo (1997). Part I: Low-wavenumber structure and evolution. Mon. Wea. Rev., 137, 603631, doi:10.1175/2008MWR2487.1.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., , R. Rogers, , and S. Lorsolo, 2013: Environmental flow impacts on tropical cyclone structure diagnosed from airborne Doppler radar composites. Mon. Wea. Rev., 141, 29492969, doi:10.1175/MWR-D-12-00334.1.

    • Search Google Scholar
    • Export Citation
  • Riemer, M., , M. T. Montgomery, , and M. Nicholls, 2010: A new paradigm for intensity modification of tropical cyclones: Thermodynamic impact of vertical wind shear on the inflow layer. Atmos. Chem. Phys., 10, 31633188, doi:10.5194/acp-10-3163-2010.

    • Search Google Scholar
    • Export Citation
  • Riemer, M., , M. T. Montgomery, , and M. Nicholls, 2013: Further examination of the thermodynamic modification of the inflow layer of tropical cyclones by vertical wind shear. Atmos. Chem. Phys., 13, 327346, doi:10.5194/acp-13-327-2013.

    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., , M. T. Montgomery, , and P. D. Reasor, 2002: A theory for the vertical alignment of a quasi-geostrophic vortex. Mon. Wea. Rev., 59, 150168, doi:10.1175/1520-0469(2002)059<0150:ATFTVA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simpson, R., , and R. Riehl, 1958: Mid-tropospheric ventilation as a constraint on hurricane development and maintenance. Preprints, Tech. Conf. on Hurricanes, Miami Beach, FL, Amer. Meteor. Soc., D4-1–D4-10.

  • Skamarock, W. C., , J. B. Klemp, , J. Dudhia, , D. O. Gill, , D. M. Barker, , M. G. Duda, , X.-Y. Huang, , W. Wang, , and J. G. Powers, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3_bw.pdf.]

  • Stern, D. P., , and F. Zhang, 2013a: How does the eye warm? Part I: A potential temperature budget analysis of an idealized tropical cyclone. J. Atmos. Sci., 70, 7390, doi:10.1175/JAS-D-11-0329.1.

    • Search Google Scholar
    • Export Citation
  • Stern, D. P., , and F. Zhang, 2013b: How does the eye warm? Part II: Sensitivity to vertical wind shear, and a trajectory analysis. J. Atmos. Sci., 70, 1849–1873, doi:10.1175/JAS-D-12-0258.1.

    • Search Google Scholar
    • Export Citation
  • Tang, B., , and K. Emanuel, 2010: Midlevel ventilation’s constraint on tropical cyclone intensity. J. Atmos. Sci., 67, 18171830, doi:10.1175/2010JAS3318.1.

    • Search Google Scholar
    • Export Citation
  • Tang, B., , and K. Emanuel, 2012: Sensitivity of tropical cyclone intensity to ventilation in an axisymmetric model. J. Atmos. Sci., 69, 23942413, doi:10.1175/JAS-D-11-0232.1.

    • Search Google Scholar
    • Export Citation
  • Tripoli, G. J., , and W. R. Cotton, 1981: The use of ice–liquid water potential temperature as a thermodynamic variable in deep atmospheric models. Mon. Wea. Rev., 109, 10941102, doi:10.1175/1520-0493(1981)109<1094:TUOLLW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tuleya, R. E., , and Y. Kurihara, 1981: A numerical study on the effects of environmental flow on tropical storm genesis. Mon. Wea. Rev., 109, 24872506, doi:10.1175/1520-0493(1981)109<2487:ANSOTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., , and C.-C. Wu, 2004: Current understanding of tropical cyclone structure and intensity changes—A review. Meteor. Atmos. Phys., 87, 257278, doi:10.1007/s00703-003-0055-6.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., , F. D. Marks, , and R. J. Feinberg, 1984: Stationary and moving convective bands in hurricanes. J. Atmos. Sci., 41, 31893211, doi:10.1175/1520-0469(1984)041<3189:SAMCBI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wong, M., , and J. Chan, 2004: Tropical cyclone intensity in vertical wind shear. J. Atmos. Sci., 61, 18591876, doi:10.1175/1520-0469(2004)061<1859:TCIIVW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, L., , and S. Braun, 2004: Effects of environmentally induced asymmetries on hurricane intensity: A numerical study. J. Atmos. Sci., 61, 30653081, doi:10.1175/JAS-3343.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., , Y. Liu, , and M. K. Yau, 2002: A multiscale numerical study of Hurricane Andrew (1992). Part V: Inner-core thermodynamics. Mon. Wea. Rev., 130, 27452763, doi:10.1175/1520-0493(2002)130<2745:AMNSOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., , R. F. Rogers, , P. D. Reasor, , E. W. Uhlhorn, , and F. D. Marks Jr., 2013: Asymmetric hurricane boundary layer structure from dropsonde composites in relation to the environmental vertical wind shear. Mon. Wea. Rev., 141, 39683984, doi:10.1175/MWR-D-12-00335.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 55 55 8
PDF Downloads 2083 2083 5

Effects of Vertical Wind Shear on Inner-Core Thermodynamics of an Idealized Simulated Tropical Cyclone

View More View Less
  • 1 Key Laboratory of Mesoscale Severe Weather/MOE, and School of Atmospheric Sciences, Nanjing University, Nanjing, China
© Get Permissions
Restricted access

Abstract

A suite of idealized simulations of tropical cyclones (TCs) with weak to strong vertical wind shear (VWS) imposed during the mature stage was employed to examine the effects of VWS on the inner-core thermodynamics and intensity change of TCs using a three-dimensional full-physics numerical model as well as a budget analysis of moist entropy. For sheared TCs with shear-induced convective asymmetries, VWS tends to reduce moist entropy within the midlevel eyewall and the boundary layer (BL) but supply moist entropy outside the eyewall above the BL. Such changes in moist entropy reduce the radial gradient of moist entropy across the eyewall, resulting in weakening of the TC. Budget analysis showed that the intense eddy fluxes are mainly responsible for the reduction and/or increase in entropy in the sheared TCs. The entropy reduction within the midlevel eyewall is a result of both the radial eddy flux and the vertical eddy flux. These eddy fluxes are effective at introducing low-entropy air into the midlevel eyewall. Accompanying the flushing of midlevel low-entropy air into the BL, there is an increase in moist entropy outside the eyewall above the BL due to the upward transport of moisture from the BL by shear-induced convection. This represents a new potential pathway to further restrain the radial gradient of moist entropy across the eyewall and hence TC intensity in the sheared environmental flow.

Denotes Open Access content.

Corresponding author address: Dr. Zhe-Min Tan, School of Atmospheric Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, China. E-mail: zmtan@nju.edu.cn

Abstract

A suite of idealized simulations of tropical cyclones (TCs) with weak to strong vertical wind shear (VWS) imposed during the mature stage was employed to examine the effects of VWS on the inner-core thermodynamics and intensity change of TCs using a three-dimensional full-physics numerical model as well as a budget analysis of moist entropy. For sheared TCs with shear-induced convective asymmetries, VWS tends to reduce moist entropy within the midlevel eyewall and the boundary layer (BL) but supply moist entropy outside the eyewall above the BL. Such changes in moist entropy reduce the radial gradient of moist entropy across the eyewall, resulting in weakening of the TC. Budget analysis showed that the intense eddy fluxes are mainly responsible for the reduction and/or increase in entropy in the sheared TCs. The entropy reduction within the midlevel eyewall is a result of both the radial eddy flux and the vertical eddy flux. These eddy fluxes are effective at introducing low-entropy air into the midlevel eyewall. Accompanying the flushing of midlevel low-entropy air into the BL, there is an increase in moist entropy outside the eyewall above the BL due to the upward transport of moisture from the BL by shear-induced convection. This represents a new potential pathway to further restrain the radial gradient of moist entropy across the eyewall and hence TC intensity in the sheared environmental flow.

Denotes Open Access content.

Corresponding author address: Dr. Zhe-Min Tan, School of Atmospheric Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, China. E-mail: zmtan@nju.edu.cn
Save