• Carsey, T. P., , and H. E. Willoughby, 2005: Ozone measurements from eyewall transects of two Atlantic tropical cyclones. Mon. Wea. Rev., 133, 166174, doi:10.1175/MWR-2844.1.

    • Search Google Scholar
    • Export Citation
  • Chen, H., , and D.-L. Zhang, 2013: On the rapid intensification of Hurricane Wilma (2005). Part II: Convective bursts and the upper-level warm core. J. Atmos. Sci., 70, 146162, doi:10.1175/JAS-D-12-062.1.

    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., 2011: Rewriting the climatology of the tropical North Atlantic and Caribbean Sea atmosphere. J. Climate, 24, 893908, doi:10.1175/2010JCLI3496.1.

    • Search Google Scholar
    • Export Citation
  • Durden, S. L., 2013: Observed tropical cyclone eye thermal anomaly profiles extending above 300 hPa. Mon. Wea. Rev., 141, 42564268, doi:10.1175/MWR-D-13-00021.1.

    • Search Google Scholar
    • Export Citation
  • Eliassen, A., 1951: Slow thermally or frictionally controlled meridional circulation in a circular vortex. Astrophys. Norv., 5, 1960.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605, doi:10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frank, W., 1977: The structure and energetics of the tropical cyclone I. Storm structure. Mon. Wea. Rev., 105, 11191135, doi:10.1175/1520-0493(1977)105<1119:TSAEOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fudeyasu, H., , and Y. Wang, 2011: Balanced contribution to the intensification of a tropical cyclone simulated in TCM4: Outer-core spinup process. J. Atmos. Sci., 68, 430449, doi:10.1175/2010JAS3523.1.

    • Search Google Scholar
    • Export Citation
  • Fudeyasu, H., , Y. Wang, , M. Satoh, , T. Nasuno, , H. Miura, , and W. Yanase, 2010: Multiscale interactions in the life cycle of a tropical cyclone simulated in a global cloud-system-resolving model. Part II: System-scale and mesoscale processes. Mon. Wea. Rev., 138, 43054327, doi:10.1175/2010MWR3475.1.

    • Search Google Scholar
    • Export Citation
  • Halverson, J., , J. Simpson, , G. Heymsfield, , H. Pierce, , T. Hock, , and L. Ritchie, 2006: Warm core structure of Hurricane Erin diagnosed from high altitude dropsondes during CAMEX-4. J. Atmos. Sci., 63, 309324, doi:10.1175/JAS3596.1.

    • Search Google Scholar
    • Export Citation
  • Hawkins, H. F., , and D. T. Rubsam, 1968: Hurricane Hilda, 1964. II: Structure and budgets of the hurricane on October 1, 1964. Mon. Wea. Rev., 96, 617636, doi:10.1175/1520-0493(1968)096<0617:HH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hawkins, H. F., , and S. M. Imbembo, 1976: The structure of a small, intense hurricane—Inez 1966. Mon. Wea. Rev., 104, 418442, doi:10.1175/1520-0493(1976)104<0418:TSOASI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., , and R. T. Merrill, 1984: On the dynamics of tropical cyclone structural changes. Quart. J. Roy. Meteor. Soc., 110,723745, doi:10.1002/qj.49711046510.

    • Search Google Scholar
    • Export Citation
  • Kanada, S., , A. Wada, , M. Nakano, , and T. Kato, 2012: Effect of planetary boundary layer schemes on the development of intense tropical cyclones using a cloud-resolving model. J. Geophys. Res., 117, D03107, doi:10.1029/2011JD016582.

    • Search Google Scholar
    • Export Citation
  • Kepert, J., , and Y. Wang, 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part II: Nonlinear enhancement. J. Atmos. Sci., 58, 24852501, doi:10.1175/1520-0469(2001)058<2485:TDOBLJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., , D. Zhang, , and M. Yau, 1997: A multiscale numerical study of Hurricane Andrew (1992). Part I: Explicit simulation and verification. Mon. Wea. Rev., 125, 30733093, doi:10.1175/1520-0493(1997)125<3073:AMNSOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., , D. Zhang, , and M. Yau, 1999: A multiscale numerical study of Hurricane Andrew (1992). Part II: Kinematics and inner-core structures. Mon. Wea. Rev., 127, 25972616, doi:10.1175/1520-0493(1999)127<2597:AMNSOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Louis, J.-F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17, 187202, doi:10.1007/BF00117978.

    • Search Google Scholar
    • Export Citation
  • Moon, I.-J., , I. Ginis, , T. Hara, , and B. Thomas, 2007: A physics-based parameterization of air–sea momentum flux at high wind speeds and its impact on hurricane intensity predictions. Mon. Wea. Rev., 135, 28692878, doi:10.1175/MWR3432.1.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., , and H. Niino, 2004: An improved Mellor–Yamada level-3 model with condensation physics: Its design and verification. Bound.-Layer Meteor., 112, 131, doi:10.1023/B:BOUN.0000020164.04146.98.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., , and H. Niino, 2006: An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397407, doi:10.1007/s10546-005-9030-8.

    • Search Google Scholar
    • Export Citation
  • Noda, A. T., , K. Oouchi, , M. Satoh, , H. Tomita, , S. Iga, , and Y. Tsushima, 2010: Importance of the subgrid-scale turbulent moist process: Cloud distribution in global cloud-resolving simulations. Atmos. Res., 96, 208217, doi:10.1016/j.atmosres.2009.05.007.

    • Search Google Scholar
    • Export Citation
  • Pattnaik, S., , and T. N. Krishnamurti, 2007: Impact of cloud microphysical processes on hurricane intensity, Part 2: Sensitivity experiments. Meteor. Atmos. Phys., 97, 127147, doi:10.1007/s00703-006-0248-x.

    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. A. G., , and H. E. H. Willoughby, 2009: Diabatically induced secondary flows in tropical cyclones. Part I: Quasi-steady forcing. Mon. Wea. Rev., 137, 805821, doi:10.1175/2008MWR2657.1.

    • Search Google Scholar
    • Export Citation
  • Persing, J., , and M. T. Montgomery, 2003: Hurricane superintensity. J. Atmos. Sci., 60, 23492371, doi:10.1175/1520-0469(2003)060<2349:HS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., , and K. A. Emanuel, 1987: An air-sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542561, doi:10.1175/1520-0469(1987)044<0542:AAITFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., , T. Matsuno, , H. Tomita, , H. Miura, , T. Nasuno, , and S. Iga, 2008: Nonhydrostatic Icosahedral Atmospheric Model (NICAM) for global cloud resolving simulations. J. Comput. Phys., 227, 34863514, doi:10.1016/j.jcp.2007.02.006.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., , and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 16871697, doi:10.1175/1520-0469(1982)039<1687:ISATCD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., , and B. D. McNoldy, 2010: Application of the concepts of Rossby length and Rossby depth to tropical cyclone dynamics. J. Adv. Model. Earth Syst.,2 (7), doi:10.3894/JAMES.2010.2.7.

  • Sekiguchi, M., , and T. Nakajima, 2008: A k-distribution-based radiation code and its computational optimization for an atmospheric general circulation model. J. Quant. Spectrosc. Radiat. Transfer, 109, 27792793, doi:10.1016/j.jqsrt.2008.07.013.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L., , and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378394, doi:10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., , J. B. Halverson, , B. S. Ferrier, , W. A. Petersen, , R. H. Simpson, , R. Blakeslee, , and S. L. Durden, 1998: On the role of “hot towers” in tropical cyclone formation. Meteor. Atmos. Phys., 67, 1535, doi:10.1007/BF01277500.

    • Search Google Scholar
    • Export Citation
  • Smith, R., , and M. Montgomery, 2008: Balanced boundary layers used in hurricane models. Quart. J. Roy. Meteor. Soc., 134, 13851395, doi:10.1002/qj.296.

    • Search Google Scholar
    • Export Citation
  • Stern, D. P., , and D. S. Nolan, 2012: On the height of the warm core in tropical cyclones. J. Atmos. Sci., 69, 16571680, doi:10.1175/JAS-D-11-010.1.

    • Search Google Scholar
    • Export Citation
  • Stern, D. P., , and F. Zhang, 2013: How does the eye warm? Part I: A potential temperature budget analysis of an idealized tropical cyclone. J. Atmos. Sci., 70, 7390, doi:10.1175/JAS-D-11-0329.1.

    • Search Google Scholar
    • Export Citation
  • Tomita, H., 2008: New microphysical schemes with five and six categories by diagnostic generation of cloud ice. J. Meteor. Soc. Japan, 86, 121142, doi:10.2151/jmsj.86A.121.

    • Search Google Scholar
    • Export Citation
  • Tomita, H., , and M. Satoh, 2004: A new dynamical framework of nonhydrostatic global model using the icosahedral grid. Fluid Dyn. Res., 34, 357400, doi:10.1016/j.fluiddyn.2004.03.003.

    • Search Google Scholar
    • Export Citation
  • Van Sang, N., , R. K. Smith, , and M. T. Montgomery, 2008: Tropical-cyclone intensification and predictability in three dimensions. Quart. J. Roy. Meteor. Soc., 134, 563582, doi:10.1002/qj.235.

    • Search Google Scholar
    • Export Citation
  • Vigh, J. L., , and W. H. Schubert, 2009: Rapid development of the tropical cyclone warm core. J. Atmos. Sci., 66, 33353350, doi:10.1175/2009JAS3092.1.

    • Search Google Scholar
    • Export Citation
  • Wang, H., , and Y. Wang, 2014: A numerical study of Typhoon Megi (2010): Part I: Rapid intensification. Mon. Wea. Rev., 142, 29–48, doi:10.1175/MWR-D-13-00070.1

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2007: A multiply nested, movable mesh, fully compressible, nonhydrostatic tropical cyclone model TCM4: Model description and development of asymmetries without explicit asymmetric forcing. Meteor. Atmos. Phys., 97, 93116, doi:10.1007/s00703-006-0246-z.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H., , R. Darling, , and M. Rahn, 2006: Parametric representation of the primary hurricane vortex. Part II: A new family of sectionally continuous profiles. Mon. Wea. Rev., 134, 11021120, doi:10.1175/MWR3106.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., , and H. Chen, 2012: Importance of the upper-level warm core in the rapid intensification of a tropical cyclone. Geophys. Res. Lett., 39, L02806, doi:10.1029/2011GL050578.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., , Y. Liu, , and M. K. Yau, 2002:A multiscale numerical study of Hurricane Andrew (1992). Part V: Inner-core thermodynamics. Mon. Wea. Rev., 130, 27452763, doi:10.1175/1520-0493(2002)130<2745:AMNSOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 56 56 14
PDF Downloads 60 60 9

On the Warm Core of a Tropical Cyclone Formed near the Tropopause

View More View Less
  • 1 Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Chiba, Japan
© Get Permissions
Restricted access

Abstract

On the basis of numerical results of a three-dimensional model diagnosed using balance dynamics, a mechanism by which the upper-level warm core of tropical cyclones (TCs) forms is proposed. The numerical results reveal that an upper-level warm core develops when TCs intensify just prior to reaching the mature stage. Potential temperature budget analysis reveals that for the tendency of potential temperature, the azimuthal-mean component of advection is dominant at the upper level of the eye at the mature stage. Sawyer–Eliassen diagnosis shows that tendencies due to forced flow by diabatic heating and diffusion of tangential wind are dominant in the eye and are negatively correlated to each other. The distributions of the diabatic heating in the simulated TC are not peculiar. Therefore, it is unlikely that the heating distribution itself is the primary cause of the flow from the lower stratosphere. The analyses of forced circulations of idealized vortices show that the upper-level subsidence is enhanced in the eye when the vortex is sufficiently tall to penetrate the statically stable stratosphere. This result is deduced because the stronger inertial stability extends the response to the heating of the lower stratosphere and causes upper-level adiabatic warming. Therefore, the upper-level warm core emerges if angular momentum is transported into the lower stratosphere due to processes such as convective bursts. The present analysis suggests that TCs can be even stronger than that expected by theories in which the TC vortex is confined in the troposphere.

Denotes Open Access content.

Corresponding author address: Tomoki Ohno, Atmosphere and Ocean Research Institute, University of Tokyo 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8568, Japan. E-mail: t-ohno@aori.u-tokyo.ac.jp

Abstract

On the basis of numerical results of a three-dimensional model diagnosed using balance dynamics, a mechanism by which the upper-level warm core of tropical cyclones (TCs) forms is proposed. The numerical results reveal that an upper-level warm core develops when TCs intensify just prior to reaching the mature stage. Potential temperature budget analysis reveals that for the tendency of potential temperature, the azimuthal-mean component of advection is dominant at the upper level of the eye at the mature stage. Sawyer–Eliassen diagnosis shows that tendencies due to forced flow by diabatic heating and diffusion of tangential wind are dominant in the eye and are negatively correlated to each other. The distributions of the diabatic heating in the simulated TC are not peculiar. Therefore, it is unlikely that the heating distribution itself is the primary cause of the flow from the lower stratosphere. The analyses of forced circulations of idealized vortices show that the upper-level subsidence is enhanced in the eye when the vortex is sufficiently tall to penetrate the statically stable stratosphere. This result is deduced because the stronger inertial stability extends the response to the heating of the lower stratosphere and causes upper-level adiabatic warming. Therefore, the upper-level warm core emerges if angular momentum is transported into the lower stratosphere due to processes such as convective bursts. The present analysis suggests that TCs can be even stronger than that expected by theories in which the TC vortex is confined in the troposphere.

Denotes Open Access content.

Corresponding author address: Tomoki Ohno, Atmosphere and Ocean Research Institute, University of Tokyo 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8568, Japan. E-mail: t-ohno@aori.u-tokyo.ac.jp
Save