• Ambaum, M. H. P., , and L. Novak, 2014: A nonlinear oscillator describing storm track variability. Quart. J. Roy. Meteor. Soc., 140, 26802684, doi:10.1002/qj.2352.

    • Search Google Scholar
    • Export Citation
  • Ambaum, M. H. P., , B. J. Hoskins, , and D. B. Stephenson, 2001: Arctic Oscillation or North Atlantic Oscillation? J. Climate, 14, 34953507, doi:10.1175/1520-0442(2001)014<3495:AOONAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Athanasiadis, P., , and M. H. P. Ambaum, 2009: Linear contributions of different time scales to teleconnectivity. J. Climate, 22, 37203728, doi:10.1175/2009JCLI2707.1.

    • Search Google Scholar
    • Export Citation
  • Athanasiadis, P., , and M. H. P. Ambaum, 2010: Do high-frequency eddies contribute to low-frequency teleconnection tendencies? J. Atmos. Sci., 67, 419433, doi:10.1175/2009JAS3153.1.

    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., , S. Lee, , and S. B. Feldstein, 2004: Synoptic view of the North Atlantic Oscillation. J. Atmos. Sci., 61, 121144, doi:10.1175/1520-0469(2004)061<0121:SVOTNA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Blackmon, M. L., , Y.-H. Lee, , and J. M. Wallace, 1984: Horizontal structure of 500 mb height fluctuations with long, intermediate and short time scales. J. Atmos. Sci., 41, 961980, doi:10.1175/1520-0469(1984)041<0961:HSOMHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brayshaw, D. J., , B. Hoskins, , and M. Blackburn, 2011: The basic ingredients of the North Atlantic storm track. Part II: Sea surface temperatures. J. Atmos. Sci., 68, 17841805, doi:10.1175/2011JAS3674.1.

    • Search Google Scholar
    • Export Citation
  • Chang, E., , S. Lee, , and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15, 21632183, doi:10.1175/1520-0442(2002)015<02163:STD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 10161022, doi:10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., 2003: The dynamics of NAO teleconnection pattern growth and decay. Quart. J. Roy. Meteor. Soc., 129, 901924, doi:10.1256/qj.02.76.

    • Search Google Scholar
    • Export Citation
  • Frame, T. H., , M. H. P. Ambaum, , S. S. Gray, , and J. Methven, 2011: Ensemble prediction of transitions of the North Atlantic eddy-driven jet. Quart. J. Roy. Meteor. Soc., 137, 12881297, doi:10.1002/qj.829.

    • Search Google Scholar
    • Export Citation
  • Franzke, C., , and S. B. Feldstein, 2005: The continuum and dynamics of Northern Hemisphere teleconnection patterns. J. Atmos. Sci., 62, 32503267, doi:10.1175/JAS3536.1.

    • Search Google Scholar
    • Export Citation
  • Franzke, C., , S. Lee, , and S. B. Feldstein, 2004: Is the North Atlantic Oscillation a breaking wave? J. Atmos. Sci., 61, 145160, doi:10.1175/1520-0469(2004)061<0145:ITNAOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Franzke, C., , T. Woollings, , and O. Martius, 2011: Persistent circulation regimes and preferred regime transitions in the North Atlantic. J. Atmos. Sci., 68, 28092825, doi:10.1175/JAS-D-11-046.1.

    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., , and G. K. Vallis, 2007: Eddy–zonal flow interactions and the persistence of the zonal index. J. Atmos. Sci., 64, 32963311, doi:10.1175/JAS4006.1.

    • Search Google Scholar
    • Export Citation
  • Hannachi, A., , T. Woolings, , and K. Fraedrich, 2012: The North Atlantic jet stream: A look at preferred positions, paths and transitions. Quart. J. Roy. Meteor. Soc., 138, 862877, doi:10.1002/qj.959.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B., , and P. J. Valdes, 1990: On the existence of storm-tracks. J. Atmos. Sci., 47, 18541864, doi:10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B., , I. James, , and G. White, 1983: The shape, propagation and mean-flow interaction of large-scale weather systems. J. Atmos. Sci., 40, 15951612, doi:10.1175/1520-0469(1983)040<1595:TSPAMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • James, I. N., 1994: Introduction to Circulating Atmospheres. Cambridge University Press, 230 pp.

  • Lorenz, D. J., , and D. L. Hartmann, 2003: Eddy-zonal flow feedback in the Northern Hemisphere winter. J. Climate, 16, 12121227, doi:10.1175/1520-0442(2003)16<1212:EFFITN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mailier, P. J., , D. B. Stephenson, , C. A. T. Ferro, , and K. I. Hodges, 2006: Serial clustering of extratropical cyclones. Mon. Wea. Rev., 134, 22242240, doi:10.1175/MWR3160.1.

    • Search Google Scholar
    • Export Citation
  • Messori, G., , and A. Czaja, 2013: On the sporadic nature of meridional heat transport by transient eddies. Quart. J. Roy. Meteor. Soc., 139, 9991008, doi:10.1002/qj.2011.

    • Search Google Scholar
    • Export Citation
  • Namias, J., 1950: The index cycle and its role in the general circulation. J. Meteor., 7, 130139, doi:10.1175/1520-0469(1950)007<0130:TICAIR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., 1998: Poleward deflection of storm tracks. J. Atmos. Sci., 55, 25772602, doi:10.1175/1520-0469(1998)055<2577:PDOST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., 2003: Bifurcation in eddy life cycles: Implications for storm track variability. J. Atmos. Sci., 60, 9931023, doi:10.1175/1520-0469(2003)60<993:BIELCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pinto, J. G., , S. Zacharias, , A. H. Fink, , G. C. Leckebusch, , and U. Ulbrich, 2009: Factors contributing to the development of extreme North Atlantic cyclones and their relationship with the NAO. Climate Dyn., 32, 711737, doi:10.1007/s00382-008-0396-4.

    • Search Google Scholar
    • Export Citation
  • Pinto, J. G., , M. Reyers, , and U. Ulbrich, 2011: The variable link between PNA and NAO in observations and in multi-century CGCM simulations. Climate Dyn., 36, 337354, doi:10.1007/s00382-010-0770-x.

    • Search Google Scholar
    • Export Citation
  • Rivière, G., 2009: Effect of latitudinal variations in low-level baroclinicity on eddy life cycles and upper-tropospheric wave-breaking processes. J. Atmos. Sci., 66, 15691592, doi:10.1175/2008JAS2919.1.

    • Search Google Scholar
    • Export Citation
  • Rivière, G., , and I. Orlanski, 2007: Characteristics of the Atlantic storm-track eddy activity and its relation with the North Atlantic Oscillation. J. Atmos. Sci., 64, 241266, doi:10.1175/JAS3850.1.

    • Search Google Scholar
    • Export Citation
  • Sanders, F., , and J. R. Gyakum, 1980: Synoptic-dynamic climatology of the “bomb.” Mon. Wea. Rev., 108, 15891606, doi:10.1175/1520-0493(1980)108<1589:SDCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , and T. Birner, 2012: On the linkages between the tropospheric isentropic slope and eddy fluxes of heat during Northern Hemisphere winter. J. Atmos. Sci., 69, 18111823, doi:10.1175/JAS-D-11-0187.1.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., , B. J. Hoskins, , and M. E. McIntyre, 1993: Two paradigms of baroclinic wave life-cycle behaviour. Quart. J. Roy. Meteor. Soc., 119, 1755, doi:10.1002/qj.49711950903.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and et al. , 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • von Storch, H., , and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 494 pp.

  • Wittman, M., , R. Scott, , and A. Charlton, 2004: Stratospheric influence on baroclinic lifecycles: Connection to the Arctic Oscillation. Geophys. Res. Lett., 31, L16113, doi:10.1029/2004GL020503.

    • Search Google Scholar
    • Export Citation
  • Wittman, M., , A. Charlton, , and L. Polvani, 2007: The effect of lower stratospheric shear on barclinic instability. J. Atmos. Sci., 64, 479496, doi:10.1175/JAS3828.1.

    • Search Google Scholar
    • Export Citation
  • Woollings, T., , B. Hoskins, , M. Blackburn, , and P. Berrisford, 2008: A new Rossby wave–breaking interpretation of the North Atlantic Oscillation. J. Atmos. Sci., 65, 609626, doi:10.1175/2007JAS2347.1.

    • Search Google Scholar
    • Export Citation
  • Woollings, T., , A. Hannachi, , and B. Hoskins, 2010: Variability of the North Atlantic eddy-driven jet stream. Quart. J. Roy. Meteor. Soc., 136, 856868, doi:10.1002/qj.625.

    • Search Google Scholar
    • Export Citation
  • Woollings, T., , J. G. Pinto, , and J. A. Santos, 2011: Dynamical evolution of North Atlantic ridges and poleward jet stream displacements. J. Atmos. Sci., 68, 954963, doi:10.1175/2011JAS3661.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 200 200 40
PDF Downloads 142 142 25

The Life Cycle of the North Atlantic Storm Track

View More View Less
  • 1 Department of Meteorology, University of Reading, Reading, United Kingdom
© Get Permissions
Restricted access

Abstract

The North Atlantic eddy-driven jet exhibits latitudinal variability with evidence of three preferred latitudinal locations: south, middle, and north. Here the authors examine the drivers of this variability and the variability of the associated storm track. The authors investigate the changes in the storm-track characteristics for the three jet locations and propose a mechanism by which enhanced storm-track activity, as measured by upstream heat flux, is responsible for cyclical downstream latitudinal shifts in the jet. This mechanism is based on a nonlinear oscillator relationship between the enhanced meridional temperature gradient (and thus baroclinicity) and the meridional high-frequency (periods of shorter than 10 days) eddy heat flux. Such oscillations in baroclinicity and heat flux induce variability in eddy anisotropy, which is associated with the changes in the dominant type of wave breaking and a different latitudinal deflection of the jet. The authors’ results suggest that high heat flux is conducive to a northward deflection of the jet, whereas low heat flux is conducive to a more zonal jet. This jet-deflecting effect was found to operate most prominently downstream of the storm-track maximum, while the storm track and the jet remain anchored at a fixed latitudinal location at the beginning of the storm track. These cyclical changes in storm-track characteristics can be viewed as different stages of the storm track’s spatiotemporal life cycle.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAS-D-14-0082.s1.

Corresponding author address: Lenka Novak, Department of Meteorology, University of Reading, P.O. Box 243, Reading RG6 6BB, United Kingdom. E-mail: l.novakova@pgr.reading.ac.uk

Abstract

The North Atlantic eddy-driven jet exhibits latitudinal variability with evidence of three preferred latitudinal locations: south, middle, and north. Here the authors examine the drivers of this variability and the variability of the associated storm track. The authors investigate the changes in the storm-track characteristics for the three jet locations and propose a mechanism by which enhanced storm-track activity, as measured by upstream heat flux, is responsible for cyclical downstream latitudinal shifts in the jet. This mechanism is based on a nonlinear oscillator relationship between the enhanced meridional temperature gradient (and thus baroclinicity) and the meridional high-frequency (periods of shorter than 10 days) eddy heat flux. Such oscillations in baroclinicity and heat flux induce variability in eddy anisotropy, which is associated with the changes in the dominant type of wave breaking and a different latitudinal deflection of the jet. The authors’ results suggest that high heat flux is conducive to a northward deflection of the jet, whereas low heat flux is conducive to a more zonal jet. This jet-deflecting effect was found to operate most prominently downstream of the storm-track maximum, while the storm track and the jet remain anchored at a fixed latitudinal location at the beginning of the storm track. These cyclical changes in storm-track characteristics can be viewed as different stages of the storm track’s spatiotemporal life cycle.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAS-D-14-0082.s1.

Corresponding author address: Lenka Novak, Department of Meteorology, University of Reading, P.O. Box 243, Reading RG6 6BB, United Kingdom. E-mail: l.novakova@pgr.reading.ac.uk

Supplementary Materials

    • Supplemental Materials (PDF 7.23 MB)
Save