• Andrews, D. G., , J. R. Holton, , and C. B. Leovy, 1987: Middle Atmosphere Dynamics.International Geophysics Series, Vol. 40, Academic Press, 489 pp.

  • Berner, J., 2005: Linking nonlinearity and non-Gaussianity of planetary wave behavior by the Fokker–Planck equation. J. Atmos. Sci., 62, 20982117, doi:10.1175/JAS3468.1.

    • Search Google Scholar
    • Export Citation
  • Birner, T., , and P. D. Willliams, 2008: Sudden stratospheric warmings as noise-induced transitions. J. Atmos. Sci., 65, 33373343, doi:10.1175/2008JAS2770.1.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., , and J. Berner, 2005: Linear and nonlinear signatures in the planetary wave dynamics of an AGCM: Phase space tendencies. J. Atmos. Sci., 62, 17921811, doi:10.1175/JAS3429.1.

    • Search Google Scholar
    • Export Citation
  • Charlton, A. J., , and L. M. Polvani, 2007: A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate, 20, 449469, doi:10.1175/JCLI3996.1.

    • Search Google Scholar
    • Export Citation
  • Christiansen, B., 2000: Chaos, quasiperiodicity, and interannual variability: Studies of a stratospheric vacillation model. J. Atmos. Sci., 57, 31613173, doi:10.1175/1520-0469(2000)057<3161:CQAIVS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., , D. L. Hartmann, , and F. Sassi, 2010: Tropospheric precursors of anomalous Northern Hemisphere stratospheric polar vortices. J. Climate, 23, 32823299, doi:10.1175/2010JCLI3010.1.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., , and C. Mass, 1976: Stratospheric vacillation cycle. J. Atmos. Sci., 33, 22182225, doi:10.1175/1520-0469(1976)033<2218:SVC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Inatsu, M., , M. Kimoto, , and A. Sumi, 2007: Stratospheric sudden warming with projected global warming and related tropospheric wave activity. SOLA, 3, 105108, doi:10.2151/sola.2007-027.

    • Search Google Scholar
    • Export Citation
  • Inatsu, M., , N. Nakano, , and H. Mukougawa, 2013: Dynamics and practical predictability of extratropical wintertime low-frequency variability in a low-dimensional system. J. Atmos. Sci., 70, 939952, doi:10.1175/JAS-D-12-048.1.

    • Search Google Scholar
    • Export Citation
  • Kimoto, M., , and M. Ghil, 1993: Multiple flow regimes in the Northern Hemisphere winter. Part I. Methodology and hemispheric regimes. J. Atmos. Sci., 50, 26252643, doi:10.1175/1520-0469(1993)050<2625:MFRITN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kodera, K., , H. Mukougawa, , and A. Fujii, 2013: Influence of the vertical and zonal propagation of stratospheric planetary waves on tropospheric blockings. J. Geophys. Res. Atmos., 118, 83338345, doi:10.1002/jgrd.50650.

    • Search Google Scholar
    • Export Citation
  • Kohma, M., , S. Nishizawa, , and S. Yoden, 2010: Classification of polar-night jet oscillation and their relationship to fast and slow variations in a global mechanistic circulation model of the stratosphere and troposphere. J. Climate, 23, 64386444, doi:10.1175/2010JCLI3458.1.

    • Search Google Scholar
    • Export Citation
  • Kuroda, Y., , and K. Kodera, 2004: Role of the polar-night jet oscillation on the formation of the Arctic Oscillation in the Northern Hemisphere winter. J. Geophys. Res., 109, D11112, doi:10.1029/2003JD004123.

    • Search Google Scholar
    • Export Citation
  • Labitzke, K., 1965: On the mutual relation between stratosphere and troposphere during periods of stratospheric warmings in winter. J. Appl. Meteor., 4, 9199, doi:10.1175/1520-0450(1965)004<0091:OTMRBS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., , D. W. J. Thompson, , and D. L. Hartmann, 2004: The life cycle of the Northern Hemisphere sudden stratospheric warmings. J. Climate, 17, 25842596, doi:10.1175/1520-0442(2004)017<2584:TLCOTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., , D. L. Hartmann, , D. W. J. Thompson, , K. Jeev, , and Y. L. Yung, 2005: Stratosphere–troposphere evolution during polar vortex intensification. J. Geophys. Res., 110, D24101, doi:10.1029/2005JD006302.

    • Search Google Scholar
    • Export Citation
  • Martius, O., , L. M. Polvani, , and H. C. Davies, 2009: Blocking precursors to stratospheric sudden warming events. Geophys. Res. Lett., 36, L14806, doi:10.1029/2009GL038776.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1971: A dynamical model of the stratospheric sudden warming. J. Atmos. Sci., 28, 14791494, doi:10.1175/1520-0469(1971)028<1479:ADMOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mukougawa, H., , and T. Hirooka, 2004: Predictability of stratospheric sudden warming: A case study for 1998/99 winter. Mon. Wea. Rev., 132, 17641776, doi:10.1175/1520-0493(2004)132<1764:POSSWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mukougawa, H., , H. Sakai, , and T. Hirooka, 2005: High sensitivity to the initial condition for the prediction of stratospheric sudden warming. Geophys. Res. Lett., 32, L17806, doi:10.1029/2005GL022909.

    • Search Google Scholar
    • Export Citation
  • Naito, Y., , M. Taguchi, , and S. Yoden, 2003: A parameter sweep experiment on the effects of the equatorial QBO on stratospheric sudden warming events. J. Atmos. Sci., 60, 13801394, doi:10.1175/1520-0469(2003)060<1380:APSEOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nakano, N., , M. Inatsu, , S. Kusuoka, , and Y. Saiki, 2014: Empirical evaluation formulae of coefficients of stochastic differential equations and predictability estimate of time series (in Japanese). Stochastic processes and statistical phenomena behind PDEs, H. Naway, Ed., RIMS Kokyuroku 1919, 38–60.

  • North, G. R., , T. L. Bell, , R. F. Cahalan, , and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthgonal functions. Mon. Wea. Rev., 110, 699706, doi:10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Onogi, K., and et al. , 2007: The JRA-25 Reanalysis. J. Meteor. Soc. Japan, 85, 369432, doi:10.2151/jmsj.85.369.

  • Palmer, T. N., 1999: A nonlinear dynamical perspective on climate prediction. J. Climate, 12, 575591, doi:10.1175/1520-0442(1999)012<0575:ANDPOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Paul, W., , and J. Baschnagel, 1999: Stochastic Processes: From Physics to Finance.Springer Verlag, 231 pp.

  • Scott, R. K., , and L. M. Polvani, 2006: Internal variability of the winter stratosphere. Part I: Time-independent forcing. J. Atmos. Sci., 63, 27582776, doi:10.1175/JAS3797.1.

    • Search Google Scholar
    • Export Citation
  • Silverman, B. W., 1986: Density Estimation for Statistics and Data Analysis. Chapman and Hall, 176 pp.

  • Sun, L., , W. A. Robinson, , and G. Chen, 2012: The predictability of stratospheric warming events: More from the troposphere or the stratosphere? J. Atmos. Sci., 69, 768783, doi:10.1175/JAS-D-11-0144.1.

    • Search Google Scholar
    • Export Citation
  • Sura, P., , M. Newman, , C. Penland, , and P. Sardeshmukh, 2005: Multiplicative noise and non-Gaussianity: A paradigm for atmospheric regimes? J. Atmos. Sci., 62, 13911409, doi:10.1175/JAS3408.1.

    • Search Google Scholar
    • Export Citation
  • Taguchi, M., , and S. Yoden, 2002: Internal interannual variability of the troposphere–stratosphere coupled system in a simple global circulation model. Part II. Millenium integrations. J. Atmos. Sci., 59, 30373050, doi:10.1175/1520-0469(2002)059<3037:IIVOTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Taguchi, M., , and D. Hartmann, 2006: Increased occurrence of stratospheric sudden warmings during El Niño as simulated by WACCM. J. Climate, 19, 324332, doi:10.1175/JCLI3655.1.

    • Search Google Scholar
    • Export Citation
  • Yoden, S., 1987: Bifurcation properties of a stratospheric vacillation model. J. Atmos. Sci., 44, 17231733, doi:10.1175/1520-0469(1987)044<1723:BPOASV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 21 20 2
PDF Downloads 12 12 1

Predictability of Wintertime Stratospheric Circulation Examined Using a Nonstationary Fluctuation–Dissipation Relation

View More View Less
  • 1 Graduate School of Science, Hokkaido University, Sapporo, Japan
  • | 2 Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
  • | 3 Graduate School of Science, Tohoku University, Sendai, Japan
  • | 4 Disaster Prevention Research Institute, Kyoto University, Uji, Kyoto, Japan
© Get Permissions
Restricted access

Abstract

The dynamics and predictability of stratospheric low-frequency variability in the Northern Hemisphere winter are examined using a two-dimensional (2D) phase space spanned by the leading empirical orthogonal functions of the 10-hPa geopotential height field. The 2D phase space represents the variation of the strength of the polar night jet and the amplitude of zonal wavenumber-1 eddy components. A linearized nonstationary fluctuation–dissipation relation (NFDR) is developed based on the deterministic drift vector and the stochastic diffusion tensor estimated from a reanalysis dataset. The authors find that the solution of the linearized NFDR with an optimal data sampling time interval for estimating the drift vector and the diffusion tensor provides a good representation in the phase space of the inhomogeneous distribution of the forecast spread of the operational ensemble forecast conducted by the Japan Meteorological Agency. In particular, the linearized NFDR captures the local maximum of the forecast spread during the onset period of the major stratospheric sudden warming events.

Corresponding author address: Dr. Masaru Inatsu, Graduate School of Science, Hokkaido University, Rigaku Bldg. 8, N10W8, Kita, Sapporo, Hokkaido 060-0810, Japan. E-mail: inaz@mail.sci.hokudai.ac.jp

Abstract

The dynamics and predictability of stratospheric low-frequency variability in the Northern Hemisphere winter are examined using a two-dimensional (2D) phase space spanned by the leading empirical orthogonal functions of the 10-hPa geopotential height field. The 2D phase space represents the variation of the strength of the polar night jet and the amplitude of zonal wavenumber-1 eddy components. A linearized nonstationary fluctuation–dissipation relation (NFDR) is developed based on the deterministic drift vector and the stochastic diffusion tensor estimated from a reanalysis dataset. The authors find that the solution of the linearized NFDR with an optimal data sampling time interval for estimating the drift vector and the diffusion tensor provides a good representation in the phase space of the inhomogeneous distribution of the forecast spread of the operational ensemble forecast conducted by the Japan Meteorological Agency. In particular, the linearized NFDR captures the local maximum of the forecast spread during the onset period of the major stratospheric sudden warming events.

Corresponding author address: Dr. Masaru Inatsu, Graduate School of Science, Hokkaido University, Rigaku Bldg. 8, N10W8, Kita, Sapporo, Hokkaido 060-0810, Japan. E-mail: inaz@mail.sci.hokudai.ac.jp
Save