• Black, P. G., 1983: Ocean temperature changes induced by tropical cyclones. Ph.D. dissertation, The Pennsylvania State University, 278 pp. [Available from The Pennsylvania State University, University Park, PA 16802.]

  • Byers, H. R., 1944: General Meteorology. McGraw-Hill, 645 pp.

  • Cangialosi, J. P., 2010: Tropical cyclone report: Hurricane Earl, 25 August–4 September 2010. NOAA/NHC Tech. Rep. AL072010, 29 pp. [Available online at http://www.nhc.noaa.gov/pdf/TCR-AL072010_Earl.pdf.]

  • Cangialosi, J. P., , and J. L. Franklin, 2011: 2010 National Hurricane Center forecast verification report. NOAA/NHC Tech. Rep. 77 pp. [Available online at http://www.nhc.noaa.gov/verification/pdfs/Verification_2010.pdf.]

  • Cangialosi, J. P., , and J. L. Franklin, 2012: 2011 Atlantic and eastern North Pacific forecast verification. Proc. 66th Interdepartmental Hurricane Conf., Charleston, SC, Office of the Federal Coordinator for Meteorology, 23 pp. [Available online at http://www.ofcm.gov/ihc12/Presentations/01b-Session/03-IHC_2012_Verification_(2012)_v2.pdf.]

  • Chen, H., 2012: On the rapid intensification of Hurricane Wilma (2005). Ph.D. dissertation, University of Maryland, 150 pp. [Available from Dept. of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, MD 20740.]

  • Chen, H., , and D.-L. Zhang, 2013: On the rapid intensification of Hurricane Wilma (2005). Part II: Convective bursts and the upper-level warm core. J. Atmos. Sci., 70, 146162, doi:10.1175/JAS-D-12-062.1.

    • Search Google Scholar
    • Export Citation
  • Chen, H., , D.-L. Zhang, , J. Carton, , and R. Atlas, 2011: On the rapid intensification of Hurricane Wilma (2005). Part I: Model prediction and structural changes. Wea. Forecasting, 26, 885901, doi:10.1175/WAF-D-11-00001.1.

    • Search Google Scholar
    • Export Citation
  • Chen, Q., , and J. Fang, 2012: Effects of vertical wind shear on intensity and structure of tropical cyclone. J. Trop. Meteor., 18, 172186.

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., , and J. Molinari, 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130, 21102123, doi:10.1175/1520-0493(2002)130<2110:TEOVWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., , and J. Molinari, 2003: The relationship between storm motion, vertical wind shear, and convective asymmetries in tropical cyclones. J. Atmos. Sci., 60, 366376, doi:10.1175/1520-0469(2003)060<0366:TRBSMV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., , and J. Kaplan, 1994: Sea surface temperature and the maximum intensity of Atlantic tropical cyclones. J. Climate, 7, 13241334, doi:10.1175/1520-0442(1994)007<1324:SSTATM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., , W. M. Gray, , and P. G. Black, 2005a: Buoyancy of convective vertical motions in the inner core of intense hurricanes. Part I: General statistics. Mon. Wea. Rev., 133, 188208, doi:10.1175/MWR-2848.1.

    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., , W. M. Gray, , and P. G. Black, 2005b: Buoyancy of convective vertical motions in the inner core of intense hurricanes. Part II: Case studies. Mon. Wea. Rev., 133, 209227, doi:10.1175/MWR-2849.1.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2003: A century of scientific progress: An evaluation. Hurricane! Coping with Disaster: Progress and Challenges since Galveston 1900, R. Simpson, R. Anthes, and M. Garstang, Eds., Amer. Geophys. Union, 177–204, doi:10.1029/SP055p0177.

  • Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51, 249280, doi:10.1175/1520-0469(1994)051<0249:ADMMPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Foley, G., 1998: A marked upper tropospheric temperature anomaly observed by an aircraft near a thunderstorm over inland western Australia. Aust. Meteor. Mag., 47, 321326.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., , and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 22492269, doi:10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S. G., , F. Marks, , X. Zhang, , J.-W. Bao, , K.-S. Yeh, , and R. Atlas, 2011: The experimental HWRF system: A study on the influence of horizontal resolution on the structure and intensity changes in tropical cyclones using an idealized framework. Mon. Wea. Rev., 139, 17621784, doi:10.1175/2010MWR3535.1.

    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S. G., and et al. , 2012: Hurricane Weather Research and Forecasting (HWRF) Model: 2012 scientific documentation. HWRF Development Testbed Center Tech. Rep. 96 pp. [Available online at: http://www.dtcenter.org/HurrWRF/users/docs/scientific_documents/HWRFScientificDocumentation_v3.4a.pdf.]

  • Gopalakrishnan, S. G., , F. Marks, , J. A. Zhang, , X. Zhang, , J.-W. Bao, , and V. Tallapragada, 2013: A study of the impacts of vertical diffusion on the structure and intensity of the tropical cyclones using the high-resolution HWRF system. J. Atmos. Sci., 70, 524541, doi:10.1175/JAS-D-11-0340.1.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, doi:10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Guimond, S. R., , G. M. Heymsfield, , and F. J. Turk, 2010: Multiscale observations of Hurricane Dennis (2005): The effects of hot towers on rapid intensification. J. Atmos. Sci., 67, 633654, doi:10.1175/2009JAS3119.1.

    • Search Google Scholar
    • Export Citation
  • Hack, J. J., , and W. H. Schubert, 1986: Nonlinear response of atmospheric vortices to heating by organized cumulus convection. J. Atmos. Sci., 43, 15591573, doi:10.1175/1520-0469(1986)043<1559:NROAVT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Harnos, D. S., , and S. W. Nesbitt, 2011: Convective structure in rapidly intensifying tropical cyclones as depicted by passive microwave measurements. Geophys. Res. Lett., 38, L07805, doi:10.1029/2011GL047010.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., , M. T. Montgomery, , and C. A. Davis, 2004: The role of “vortical” hot towers in the formation of Tropical Cyclone Diana (1984). J. Atmos. Sci., 61, 12091232, doi:10.1175/1520-0469(2004)061<1209:TROVHT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., , J. B. Halverson, , J. Simpson, , L. Tian, , and T. P. Bui, 2001: ER-2 Doppler radar investigations of the eyewall of Hurricane Bonnie during the Convection and Moisture Experiment-3. J. Appl. Meteor., 40, 13101330, doi:10.1175/1520-0450(2001)040<1310:EDRIOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., , and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a Medium-Range Forecast Model. Mon. Wea. Rev., 124, 23222339, doi:10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., 2012: The relationship between tropical cyclone intensity change and the strength of inner-core convection. Mon. Wea. Rev., 140, 11641176, doi:10.1175/MWR-D-11-00134.1.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 1995: The evolution of vortices in vertical shear. I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121, 821851, doi:10.1002/qj.49712152406.

    • Search Google Scholar
    • Export Citation
  • Kaplan, J., , and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 10931108, doi:10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kaplan, J., , M. DeMaria, , and J. A. Knaff, 2010: A revised tropical cyclone rapid intensification index for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 25, 220241, doi:10.1175/2009WAF2222280.1.

    • Search Google Scholar
    • Export Citation
  • Kieper, M., , and H. Jiang, 2012: Predicting tropical cyclone rapid intensification using the 37 GHz ring pattern identified from passive microwave measurements. Geophys. Res. Lett., 39, L13804, doi:10.1029/2012GL052115.

    • Search Google Scholar
    • Export Citation
  • Kossin, J., , and W. H. Schubert, 2001: Mesovortices, polygonal flow patterns, and rapid pressure falls in hurricane-like vortices. J. Atmos. Sci., 58, 21962209, doi:10.1175/1520-0469(2001)058<2196:MPFPAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, Q., , N. Surgi, , S. Lord, , W.-S. Wu, , D. Parrish, , S. Gopalakrishnan, , J. Waldrop, , and J. Gamache, 2006: Hurricane initialization in HWRF model. 27th Conf. on Hurricanes and Tropical Meteorology, Monterey, CA, Amer. Meteor. Soc., 8A.2. [Available online at https://ams.confex.com/ams/27Hurricanes/techprogram/paper_108496.htm.]

  • Liu, Y., , D.-L. Zhang, , and M. K. Yau, 1999: A multiscale numerical study of Hurricane Andrew (1992). Part II: Kinematics and inner-core structures. Mon. Wea. Rev., 127, 25972616, doi:10.1175/1520-0493(1999)127<2597:AMNSOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marks, F. D., 1985: Evolution of the structure of precipitation in Hurricane Allen (1980). Mon. Wea. Rev., 113, 909930, doi:10.1175/1520-0493(1985)113<0909:EOTSOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Merrill, R. T., 1988: Environmental influences on hurricane intensification. J. Atmos. Sci., 45, 16781687, doi:10.1175/1520-0469(1988)045<1678:EIOHI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., , and D. Vollaro, 2010: Rapid intensification of a sheared tropical storm. Mon. Wea. Rev., 138, 38693885, doi:10.1175/2010MWR3378.1.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., , P. Dodge, , D. Vollaro, , K. L. Corbosiero, , and F. Marks, 2006: Mesoscale aspects of the downshear reformation of a tropical cyclone. J. Atmos. Sci., 63, 341354, doi:10.1175/JAS3591.1.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., , M. E. Nicholls, , T. A. Cram, , and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355386, doi:10.1175/JAS3604.1.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., , J. A. Zhang, , and R. K. Smith, 2014: An analysis of the observed low-level structure of rapidly intensifying and mature hurricane Earl (2010). Quart. J. Roy. Meteor. Soc., 140, 21322146, doi:10.1002/qj.2283.

    • Search Google Scholar
    • Export Citation
  • Nguyen, M. C., , M. J. Reeder, , N. E. Davidson, , R. K. Smith, , and M. T. Montgomery, 2011: Inner-core vacillation cycles during the intensification of Hurricane Katrina. Quart. J. Roy. Meteor. Soc., 137, 829844, doi:10.1002/qj.823.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., , Y. Moon, , and D. P. Stern, 2007: Tropical cyclone intensification from asymmetric convection: Energetics and efficiency. J. Atmos. Sci., 64, 33773405, doi:10.1175/JAS3988.1.

    • Search Google Scholar
    • Export Citation
  • Reasor, P., , and M. D. Eastin, 2012: Rapidly intensifying Hurricane Guillermo (1997). Part II: Resilience in shear. Mon. Wea. Rev., 140, 425444, doi:10.1175/MWR-D-11-00080.1.

    • Search Google Scholar
    • Export Citation
  • Reasor, P., , M. T. Montgomery, , and L. D. Grasso, 2004: A new look at the problem of tropical cyclones in vertical shear flow: Vortex resiliency. J. Atmos. Sci., 61, 322, doi:10.1175/1520-0469(2004)061<0003:ANLATP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reasor, P., , M. D. Eastin, , and J. F. Gamache, 2009: Rapidly intensifying Hurricane Guillermo (1997). Part I: Low-wavenumber structure and evolution. Mon. Wea. Rev., 137, 603631, doi:10.1175/2008MWR2487.1.

    • Search Google Scholar
    • Export Citation
  • Riemer, M., , M. T. Montgomery, , and M. E. Nicholls, 2010: A new paradigm for intensity modification of tropical cyclones: Thermodynamic impact of vertical wind shear on the inflow layer. Atmos. Chem. Phys., 10, 31633188, doi:10.5194/acp-10-3163-2010.

    • Search Google Scholar
    • Export Citation
  • Rodgers, E. B., , W. S. Olson, , V. M. Karyampudi, , and H. F. Pierce, 1998: Satellite-derived latent heating distribution and environmental influences in Hurricane Opal (1995). Mon. Wea. Rev., 126, 12291247, doi:10.1175/1520-0493(1998)126<1229:SDLHDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., , S. Lorsolo, , P. Reasor, , J. Gamache, , and F. Marks, 2012: Multiscale analysis of tropical cyclone kinematic structure from airborne Doppler radar composites. Mon. Wea. Rev., 140, 7799, doi:10.1175/MWR-D-10-05075.1.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., , P. Reasor, , and S. Lorsolo, 2013: Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones. Mon. Wea. Rev., 141, 29702991, doi:10.1175/MWR-D-12-00357.1.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., , P. Reasor, , and J. A. Zhang, 2015: Multiscale structure and evolution of Hurricane Earl (2010) during rapid intensification. Mon. Wea. Rev., doi:10.1175/MWR-D-14-00175.1, in press.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., , and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 16871697, doi:10.1175/1520-0469(1982)039<1687:ISATCD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shay, L. K., , G. J. Goni, , and P. G. Black, 2000: Effects of a warm oceanic feature on Hurricane Opal. Mon. Wea. Rev., 128, 13661383, doi:10.1175/1520-0493(2000)128<1366:EOAWOF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sitkowski, M., , and G. M. Barnes, 2009: Low-level thermodynamic, kinematic, and reflectivity fields of Hurricane Guillermo (1997) during rapid intensification. Mon. Wea. Rev., 137, 645663, doi:10.1175/2008MWR2531.1.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., 1980: Tropical cyclone eye dynamics. J. Atmos. Sci., 37, 12271232, doi:10.1175/1520-0469(1980)037<1227:TCED>2.0.CO;2.

  • Steranka, J., , E. B. Rodgers, , and R. C. Gentry, 1986: The relationship between satellite-measured convective bursts and tropical cyclone intensification. Mon. Wea. Rev., 114, 15391546, doi:10.1175/1520-0493(1986)114<1539:TRBSMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stern, D. P., , and F. Zhang, 2013a: How does the eye warm? Part I: A potential temperature budget analysis of an idealized tropical cyclone. J. Atmos. Sci., 70, 7390, doi:10.1175/JAS-D-11-0329.1.

    • Search Google Scholar
    • Export Citation
  • Stern, D. P., , and F. Zhang, 2013b: How does the eye warm? Part II: Sensitivity to vertical wind shear and a trajectory analysis. J. Atmos. Sci., 70, 18491873, doi:10.1175/JAS-D-12-0258.1.

    • Search Google Scholar
    • Export Citation
  • Tallapragada, V., , C. Kieu, , Y. Kwon, , S. Trahan, , Q. Liu, , Z. Zhang, , and I.-H. Kwon, 2014: Evaluation of storm structure from the operational HWRF during 2012 implementation. Mon. Wea. Rev., 142, 43084325, doi:10.1175/MWR-D-13-00010.1.

    • Search Google Scholar
    • Export Citation
  • Tang, B., , and K. Emanuel, 2010: Midlevel ventilation’s constraint on tropical cyclone intensity. J. Atmos. Sci., 67, 18171830, doi:10.1175/2010JAS3318.1.

    • Search Google Scholar
    • Export Citation
  • Van Sang, N., , R. K. Smith, , and M. T. Montgomery, 2008: Tropical-cyclone intensification and predictability in three dimensions. Quart. J. Roy. Meteor. Soc., 134, 563582, doi:10.1002/qj.235.

    • Search Google Scholar
    • Export Citation
  • Velden, C. S., , and W. L. Smith, 1983: Monitoring tropical cyclone evolution with NOAA satellite microwave observations. J. Climate Appl. Meteor., 22, 714724, doi:10.1175/1520-0450(1983)022<0714:MTCEWN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vigh, J. L., , and W. H. Schubert, 2009: Rapid development of the tropical cyclone warm core. J. Atmos. Sci., 66, 33353350, doi:10.1175/2009JAS3092.1.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1998: Tropical cyclone eye thermodynamics. Mon. Wea. Rev., 126, 30533067, doi:10.1175/1520-0493(1998)126<3053:TCET>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., , J. A. Clos, , and M. G. Shoreibah, 1982: Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39, 395411, doi:10.1175/1520-0469(1982)039<0395:CEWSWM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yablonsky, R. M., , and I. Ginis, 2008: Improving the ocean initialization of coupled hurricane–ocean models using feature-based data assimilation. Mon. Wea. Rev., 136, 25922607, doi:10.1175/2007MWR2166.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., , and H. Chen, 2012: Importance of the upper-level warm core in the rapid intensification of a tropical cyclone. Geophys. Res. Lett., 39, L02806, doi:10.1029/2011GL050578.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., , and D. Tao, 2013: Effects of vertical wind shear on the predictability of tropical cyclones. J. Atmos. Sci., 70, 975983, doi:10.1175/JAS-D-12-0133.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., , R. Rogers, , P. Reasor, , E. W. Uhlhorn, , and F. D. Marks, 2013: Asymmetric hurricane boundary layer structure from dropsonde composites in relation to the environmental vertical wind shear. Mon. Wea. Rev., 141, 39683984, doi:10.1175/MWR-D-12-00335.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 133 133 11
PDF Downloads 100 100 10

A Study on the Asymmetric Rapid Intensification of Hurricane Earl (2010) Using the HWRF System

View More View Less
  • 1 Rosenstiel School of Marine and Atmospheric Science, University of Miami, and NOAA/AOML/Hurricane Research Division, Miami, Florida
  • | 2 NOAA/AOML/Hurricane Research Division, Miami, Florida
© Get Permissions
Restricted access

Abstract

In this study, the results of a forecast from the operational Hurricane Weather Research and Forecast (HWRF) system for Hurricane Earl (2010) are verified against observations and analyzed to understand the asymmetric rapid intensification of a storm in a sheared environment. The forecast verification shows that HWRF captured well Earl’s observed evolution of intensity, convection asymmetry, wind field asymmetry, and vortex tilt in terms of magnitude and direction in the pre rapid and rapid intensification (RI) stages. Examination of the high-resolution forecast data reveals that the tilt was large at the RI onset and decreased quickly once RI commenced, suggesting that vertical alignment is the result instead of the trigger for RI. The RI onset is associated with the development of upper-level warming in the eye, which results from upper-level storm-relative flow advecting the warm air caused by subsidence warming in the upshear-left region toward the low-level storm center. This scenario does not occur until persistent convective bursts (CB) are concentrated in the downshear-left quadrant. The temperature budget calculation indicates that horizontal advection plays an important role in the development of upper-level warming in the early RI stage. The upper-level warming associated with the asymmetric intensification process occurs by means of the cooperative interaction of the convective-scale subsidence, resulting from CBs in favored regions and the shear-induced mesoscale subsidence. When CBs are concentrated in the downshear-left and upshear-left quadrants, the subsidence warming is maximized upshear and then advected toward the low-level storm center by the storm-relative flow at the upper level. Subsequently, the surface pressure falls and RI occurs.

Corresponding author address: Dr. Sundararaman G. Gopalakrishnan, NOAA/AOML/ Hurricane Research Division, 4301 Rickenbacker Causeway, Miami, FL 33149. E-mail: gopal@noaa.gov

Abstract

In this study, the results of a forecast from the operational Hurricane Weather Research and Forecast (HWRF) system for Hurricane Earl (2010) are verified against observations and analyzed to understand the asymmetric rapid intensification of a storm in a sheared environment. The forecast verification shows that HWRF captured well Earl’s observed evolution of intensity, convection asymmetry, wind field asymmetry, and vortex tilt in terms of magnitude and direction in the pre rapid and rapid intensification (RI) stages. Examination of the high-resolution forecast data reveals that the tilt was large at the RI onset and decreased quickly once RI commenced, suggesting that vertical alignment is the result instead of the trigger for RI. The RI onset is associated with the development of upper-level warming in the eye, which results from upper-level storm-relative flow advecting the warm air caused by subsidence warming in the upshear-left region toward the low-level storm center. This scenario does not occur until persistent convective bursts (CB) are concentrated in the downshear-left quadrant. The temperature budget calculation indicates that horizontal advection plays an important role in the development of upper-level warming in the early RI stage. The upper-level warming associated with the asymmetric intensification process occurs by means of the cooperative interaction of the convective-scale subsidence, resulting from CBs in favored regions and the shear-induced mesoscale subsidence. When CBs are concentrated in the downshear-left and upshear-left quadrants, the subsidence warming is maximized upshear and then advected toward the low-level storm center by the storm-relative flow at the upper level. Subsequently, the surface pressure falls and RI occurs.

Corresponding author address: Dr. Sundararaman G. Gopalakrishnan, NOAA/AOML/ Hurricane Research Division, 4301 Rickenbacker Causeway, Miami, FL 33149. E-mail: gopal@noaa.gov
Save