• Archambault, H. M., , L. F. Bosart, , D. Keyser, , and J. M. Cordeira, 2013: A climatological analysis of the extratropical flow response to recurving western North Pacific tropical cyclones. Mon. Wea. Rev., 141, 23252346, doi:10.1175/MWR-D-12-00257.1.

    • Search Google Scholar
    • Export Citation
  • Bister, M., , and B. E. Mapes, 2004: Effect of vertical dipole temperature anomalies on convection in a cloud model. J. Atmos. Sci., 61, 20922100, doi:10.1175/1520-0469(2004)061<2092:EOVDTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., 1992: Synoptic-Dynamic Meteorology in Midlatitudes: Volume 1. Principles of Kinematics and Dynamics. Oxford University Press, 431 pp.

  • Bosart, L. F., , and J. A. Bartlo, 1991: Tropical storm formation in a baroclinic environment. Mon. Wea. Rev., 119, 19792013, doi:10.1175/1520-0493(1991)119<1979:TSFIAB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bracken, W. E., , and L. F. Bosart, 2000: The role of synoptic-scale flow during tropical cyclogenesis over the North Atlantic Ocean. Mon. Wea. Rev., 128, 353376, doi:10.1175/1520-0493(2000)128<0353:TROSSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., and et al. , 2013: NASA’s Genesis and Rapid Intensification Processes (GRIP) field experiment. Bull. Amer. Meteor. Soc., 94, 345363, doi:10.1175/BAMS-D-11-00232.1.

    • Search Google Scholar
    • Export Citation
  • Burpee, R. W., 1972: The origin and structure of easterly waves in the lower troposphere of North Africa. J. Atmos. Sci., 29, 7790, doi:10.1175/1520-0469(1972)029<0077:TOASOE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., , S.-Y. Wang, , M.-C. Yen, , and A. J. Clark, 2008: Are tropical cyclones less effectively formed by easterly waves in the western North Pacific than in the North Atlantic? Mon. Wea. Rev., 136, 45274540, doi:10.1175/2008MWR2149.1.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., , and L. F. Bosart, 2001: Numerical simulations of the genesis of Hurricane Diana (1984). Part I: Control simulation. Mon. Wea. Rev., 129, 18591881, doi:10.1175/1520-0493(2001)129<1859:NSOTGO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., , and L. F. Bosart, 2002: Numerical simulations of the genesis of Hurricane Diana (1984). Part II: Sensitivity of track and intensity prediction. Mon. Wea. Rev., 130, 11001124, doi:10.1175/1520-0493(2002)130<1100:NSOTGO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., , and L. F. Bosart, 2003: Baroclinically induced tropical cyclogenesis. Mon. Wea. Rev., 131, 27302747, doi:10.1175/1520-0493(2003)131<2730:BITC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., , and L. F. Bosart, 2004: The TT problem: Forecasting the tropical transition of cyclones. Bull. Amer. Meteor. Soc., 85, 16571662, doi:10.1175/BAMS-85-11-1657.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., , and L. F. Bosart, 2006: The formation of hurricane Humberto (2001): The importance of extra-tropical precursors. Quart. J. Roy. Meteor. Soc., 132, 20552085, doi:10.1256/qj.05.42.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., , and T. J. Galarneau Jr., 2009: The vertical structure of mesoscale convective vortices. J. Atmos. Sci., 66, 686704, doi:10.1175/2008JAS2819.1.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., , and D. A. Ahijevych, 2012: Mesoscale structural evolution of three tropical weather systems observed during PREDICT. J. Atmos. Sci., 69, 12841305, doi:10.1175/JAS-D-11-0225.1.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., , and D. A. Ahijevych, 2013: Thermodynamic environments of deep convection in Atlantic tropical disturbances. J. Atmos. Sci., 70, 19121928, doi:10.1175/JAS-D-12-0278.1.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., , C. Snyder, , and A. C. Didlake Jr., 2008: A vortex-based perspective of eastern Pacific tropical cyclone formation. Mon. Wea. Rev., 136, 24612477, doi:10.1175/2007MWR2317.1.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., , J. A. Knaff, , and B. H. Connell, 2001: A tropical cyclone genesis parameter for the tropical Atlantic. Wea. Forecasting, 16, 219233, doi:10.1175/1520-0434(2001)016<0219:ATCGPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., , M. T. Montgomery, , and Z. Wang, 2009: Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys., 9, 55875646, doi:10.5194/acp-9-5587-2009.

    • Search Google Scholar
    • Export Citation
  • Elsberry, R. L., , and P. A. Harr, 2008: Tropical Cyclone Structure (TCS08) field experiment science basis, observational platforms, and strategy. Asia-Pac. J. Atmos. Sci., 44, 209231.

    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., , G. S. Lehmiller, , and T. B. Kimberlain, 1996: Objective classification of Atlantic hurricanes. J. Climate, 9, 28802889, doi:10.1175/1520-0442(1996)009<2880:OCOAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Evans, J. L., , and M. P. Guishard, 2009: Atlantic subtropical storms. Part I: Diagnostic criteria and composite analysis. Mon. Wea. Rev., 137, 20652080, doi:10.1175/2009MWR2468.1.

    • Search Google Scholar
    • Export Citation
  • Gjorgjievska, S., , and D. J. Raymond, 2014: Interaction between dynamics and thermodynamics during tropical cyclogenesis. Atmos. Chem. Phys., 14, 30653082, doi:10.5194/acp-14-3065-2014.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, doi:10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Guishard, M. P., , J. L. Evans, , and R. E. Hart, 2009: Atlantic subtropical storms. Part II: Climatology. J. Climate, 22, 35743594, doi:10.1175/2008JCLI2346.1.

    • Search Google Scholar
    • Export Citation
  • Hess, J. C., , J. B. Elsner, , and N. E. LaSeur, 1995: Improving seasonal hurricane predictions for the Atlantic basin. Wea. Forecasting, 10, 425432, doi:10.1175/1520-0434(1995)010<0425:ISHPFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hulme, A. L., , and J. E. Martin, 2009a: Synoptic- and frontal-scale influences on tropical transition events in the Atlantic basin. Part I: A six-case survey. Mon. Wea. Rev., 137, 36053625, doi:10.1175/2009MWR2802.1.

    • Search Google Scholar
    • Export Citation
  • Hulme, A. L., , and J. E. Martin, 2009b: Synoptic- and frontal-scale influences on tropical transition events in the Atlantic basin. Part II: Tropical transition of Hurricane Karen. Mon. Wea. Rev., 137, 36263650, doi:10.1175/2009MWR2803.1.

    • Search Google Scholar
    • Export Citation
  • Kelley, W. E., , and D. R. Mock, 1982: A diagnostic study of upper tropospheric cold lows over the western North Pacific. Mon. Wea. Rev., 110, 471480, doi:10.1175/1520-0493(1982)110<0471:ADSOUT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., , C. D. Thorncroft, , and N. M. J. Hall, 2006: Three-dimensional structure and dynamics of African easterly waves. Part I: Observations. J. Atmos. Sci., 63, 22122230, doi:10.1175/JAS3741.1.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., 1997: Implications of summertime sea level pressure anomalies in the tropical Atlantic region. J. Climate, 10, 789804, doi:10.1175/1520-0442(1997)010<0789:IOSSLP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Komaromi, W. A., 2013: An investigation of composite dropsonde profiles for developing and nondeveloping tropical waves during the 2010 PREDICT field campaign. J. Atmos. Sci., 70, 542558, doi:10.1175/JAS-D-12-052.1.

    • Search Google Scholar
    • Export Citation
  • Lander, M. A., 1994: Description of a monsoon gyre and its effects on the tropical cyclones in the western North Pacific during August 1991. Wea. Forecasting, 9, 640654, doi:10.1175/1520-0434(1994)009<0640:DOAMGA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Landsea, C., and et al. , 2004: The Atlantic hurricane database re-analysis project: Documentation for 1851–1910 alterations and additions to the HURDAT database. Hurricanes and Typhoons: Past, Present, and Future, R. J. Murnane and K.-B. Liu, Eds., Columbia University Press, 177–221.

  • Mahalanobis, P. C., 1936: On the generalized distance in statistics. Proc. Natl. Inst. Sci. India, 2, 4955.

  • Martius, O., , C. Schwierz, , and M. Sprenger, 2008: Dynamical tropopause variability and potential vorticity streamers in the Northern Hemisphere—A climatological analysis. Adv. Atmos. Sci., 25, 367380, doi:10.1007/s00376-008-0367-z.

    • Search Google Scholar
    • Export Citation
  • McBride, J. L., , and T. D. Keenan, 1982: Climatology of tropical cyclone genesis in the Australian region. J. Climatol., 2, 1333, doi:10.1002/joc.3370020103.

    • Search Google Scholar
    • Export Citation
  • McTaggart-Cowan, R., , L. F. Bosart, , C. A. Davis, , E. H. Atallah, , J. R. Gyakum, , and K. A. Emanuel, 2006: Analysis of Hurricane Catarina (2004). Mon. Wea. Rev., 134, 30293053, doi:10.1175/MWR3330.1.

    • Search Google Scholar
    • Export Citation
  • McTaggart-Cowan, R., , G. D. Deane, , L. F. Bosart, , C. A. Davis, , and T. J. Galarneau Jr., 2008: Climatology of tropical cyclogenesis in the North Atlantic (1948–2004). Mon. Wea. Rev., 136, 12841304, doi:10.1175/2007MWR2245.1.

    • Search Google Scholar
    • Export Citation
  • McTaggart-Cowan, R., , T. J. Galarneau Jr., , L. F. Bosart, , R. W. Moore, , and O. Martius, 2013: A global climatology of baroclinically influenced tropical cyclogenesis. Mon. Wea. Rev., 141, 19631989, doi:10.1175/MWR-D-12-00186.1.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., , S. Skubis, , and D. Vollaro, 1995: External influences on hurricane intensity. Part III: Potential vorticity structure. J. Atmos. Sci., 52, 35933606, doi:10.1175/1520-0469(1995)052<3593:EIOHIP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and et al. , 2012: The Pre-Depression Investigation of Cloud-Systems in the Tropics (PREDICT) experiment: Scientific basis, new analysis tools, and some first results. Bull. Amer. Meteor. Soc., 93, 153172, doi:10.1175/BAMS-D-11-00046.1.

    • Search Google Scholar
    • Export Citation
  • Moore, B. J., , P. J. Neiman, , F. M. Ralph, , and F. E. Barthold, 2012: Physical processes associated with heavy flooding rainfall in Nashville, Tennessee, and vicinity during 1–2 May 2010: The role of an atmospheric river and mesoscale convective systems. Mon. Wea. Rev., 140, 358378, doi:10.1175/MWR-D-11-00126.1.

    • Search Google Scholar
    • Export Citation
  • Ndarana, T., , and D. W. Waugh, 2011: A climatology of Rossby wave breaking on the Southern Hemisphere tropopause. J. Atmos. Sci., 68, 798811, doi:10.1175/2010JAS3460.1.

    • Search Google Scholar
    • Export Citation
  • Nolan, D., 2007: What is the trigger for tropical cyclogenesis? Aust. Meteor. Mag., 56, 241266.

  • Onogi, K., and et al. , 2007: The JRA-25 Reanalysis. J. Meteor. Soc. Japan, 85, 369432, doi:10.2151/jmsj.85.369.

  • Payne, B., , and J. Methven, 2012: The role of baroclinic waves in the initiation of tropical cyclones across the southern Indian Ocean. Atmos. Sci. Lett., 13, 8894, doi:10.1002/asl.369.

    • Search Google Scholar
    • Export Citation
  • Postel, G. A., , and M. H. Hitchman, 1999: A climatology of Rossby wave breaking along the subtropical tropopause. J. Atmos. Sci., 56, 359373, doi:10.1175/1520-0469(1999)056<0359:ACORWB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rappin, E. D., , and D. S. Nolan, 2012: The effect of vertical shear orientation on tropical cyclogenesis. Quart. J. Roy. Meteor. Soc., 138, 10351054, doi:10.1002/qj.977.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., , and S. Sessions, 2007: Evolution of convection during tropical cyclogenesis. Geophys. Res. Lett., 34, L06811, doi:10.1029/2006GL028607.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., , S. L. Sessions, , and C. López Carrillo, 2011: Thermodynamics of tropical cyclogenesis in the northwest Pacific. J. Geophys. Res., 116, D18101, doi:10.1029/2011JD015624.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., , and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7, 929948, doi:10.1175/1520-0442(1994)007<0929:IGSSTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Riehl, H., 1948: On the formation of typhoons. J. Meteor., 5, 247265, doi:10.1175/1520-0469(1948)005<0247:OTFOT>2.0.CO;2.

  • Rogers, R., and et al. , 2006: The intensity forecasting experiment: A NOAA multiyear field program for improving tropical cyclone intensity forecasts. Bull. Amer. Meteor. Soc., 87, 15231537, doi:10.1175/BAMS-87-11-1523.

    • Search Google Scholar
    • Export Citation
  • Sadler, J. C., 1967: The tropical upper tropospheric trough as a secondary source of typhoons and a primary source of trade wind disturbances. Tech. Rep. No. 67-12, Hawaii Institute of Geophysics, University of Hawaii, Honolulu, HI 96822, 44 pp.

  • Sadler, J. C., 1976: A role of the tropical upper tropospheric trough in early season typhoon development. Mon. Wea. Rev., 104, 12661278, doi:10.1175/1520-0493(1976)104<1266:AROTTU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sadler, J. C., 1978: Mid-season typhoon development and intensity changes and the tropical upper tropospheric trough. Mon. Wea. Rev., 106, 11371152, doi:10.1175/1520-0493(1978)106<1137:MSTDAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and et al. , 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Schenkel, B. A., , and R. E. Hart, 2012: An examination of tropical cyclone position, intensity, and intensity life cycle within atmospheric reanalysis datasets. J. Climate, 25, 34533475, doi:10.1175/2011JCLI4208.1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., , M. H. Zhang, , and P. E. Ciesielski, 2007: Heating structures of the TRMM field campaigns. J. Atmos. Sci., 64, 25932610, doi:10.1175/JAS3938.1.

    • Search Google Scholar
    • Export Citation
  • Simpson, R. H., 1974: The hurricane disaster–potential scale. Weatherwise, 27, 169186, doi:10.1080/00431672.1974.9931702.

  • Smith, R. K., , and M. T. Montgomery, 2012: Observations of the convective environment in developing and non-developing tropical disturbances. Quart. J. Roy. Meteor. Soc., 138, 17211739, doi:10.1002/qj.1910.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., , B. J. Hoskins, , and M. E. McIntyre, 1993: Two paradigms of baroclinic-wave life-cycle behavior. Quart. J. Roy. Meteor. Soc., 119, 1755, doi:10.1002/qj.49711950903.

    • Search Google Scholar
    • Export Citation
  • van Lier-Walqui, M., , T. Vukicevic, , and D. J. Posselt, 2014: Linearization of microphysical parameterization uncertainty using multiplicative process perturbation parameters. Mon. Wea. Rev., 142, 401413, doi:10.1175/MWR-D-13-00076.1.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., , and M. Sprenger, 2007: Identification and ERA-15 climatology of potential vorticity streamers and cutoffs near the extratropical tropopause. J. Atmos. Sci., 64, 15691586, doi:10.1175/JAS3912.1.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. M., 1995: Statistical Methods in the Atmospheric Sciences: An Introduction. Academic Press, 467 pp.

  • Yu, H., , and H. J. Kwon, 2005: Effect of TC–trough interaction on the intensity change of two typhoons. Wea. Forecasting, 20, 199211, doi:10.1175/WAF836.1.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., , and R. A. Houze Jr., 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 19411963, doi:10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 88 88 16
PDF Downloads 72 72 11

Development of North Atlantic Tropical Disturbances near Upper-Level Potential Vorticity Streamers

View More View Less
  • 1 National Center for Atmospheric Research,* Boulder, Colorado
  • | 2 Numerical Weather Prediction Research Section, Environment Canada, Dorval, Quebec, Canada
  • | 3 Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York
  • | 4 National Center for Atmospheric Research,* Boulder, Colorado
© Get Permissions
Restricted access

Abstract

Tropical cyclone (TC) development near upper-level potential vorticity (PV) streamers in the North Atlantic is studied from synoptic climatology, composite, and case study perspectives. Midlatitude anticyclonic wave breaking is instrumental in driving PV streamers into subtropical and tropical latitudes, in particular near the time-mean midocean trough identified previously as the tropical upper-tropospheric trough. Twelve TCs developed within one Rossby radius of PV streamers in the North Atlantic from June through November 2004–08. This study uses composite analysis in the disturbance-relative framework to compare the structural and thermodynamic evolution for developing and nondeveloping cases.

The results show that incipient tropical disturbances are embedded in an environment characterized by 850–200-hPa westerly vertical wind shear and mid- and upper-level quasigeostrophic ascent associated with the PV streamer, with minor differences between developing and nondeveloping cases. The key difference in synoptic-scale flow between developing and nondeveloping cases is the strength of the anticyclone north of the incipient tropical disturbance. The developing cases are marked by a stronger near-surface pressure gradient and attendant easterly flow north of the vortex, which drives enhanced surface latent heat fluxes and westward (upshear) water vapor transport. This evolution in water vapor facilitates an upshear propagation of convection, and the diabatically influenced divergent outflow erodes the PV streamer aloft by negative advection of PV by the divergent wind. This result suggests that the PV streamer plays a secondary role in TC development, with the structure and intensity of the synoptic-scale anticyclone north of the incipient vortex playing a primary role.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Thomas J. Galarneau, Jr., National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. E-mail: tomjr@ucar.edu

Abstract

Tropical cyclone (TC) development near upper-level potential vorticity (PV) streamers in the North Atlantic is studied from synoptic climatology, composite, and case study perspectives. Midlatitude anticyclonic wave breaking is instrumental in driving PV streamers into subtropical and tropical latitudes, in particular near the time-mean midocean trough identified previously as the tropical upper-tropospheric trough. Twelve TCs developed within one Rossby radius of PV streamers in the North Atlantic from June through November 2004–08. This study uses composite analysis in the disturbance-relative framework to compare the structural and thermodynamic evolution for developing and nondeveloping cases.

The results show that incipient tropical disturbances are embedded in an environment characterized by 850–200-hPa westerly vertical wind shear and mid- and upper-level quasigeostrophic ascent associated with the PV streamer, with minor differences between developing and nondeveloping cases. The key difference in synoptic-scale flow between developing and nondeveloping cases is the strength of the anticyclone north of the incipient tropical disturbance. The developing cases are marked by a stronger near-surface pressure gradient and attendant easterly flow north of the vortex, which drives enhanced surface latent heat fluxes and westward (upshear) water vapor transport. This evolution in water vapor facilitates an upshear propagation of convection, and the diabatically influenced divergent outflow erodes the PV streamer aloft by negative advection of PV by the divergent wind. This result suggests that the PV streamer plays a secondary role in TC development, with the structure and intensity of the synoptic-scale anticyclone north of the incipient vortex playing a primary role.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Thomas J. Galarneau, Jr., National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. E-mail: tomjr@ucar.edu
Save