• Adams-Selin, R. D., , S. C. van den Heever, , and R. H. Johnson, 2013: Impact of graupel parameterization schemes on idealized bow echo simulations. Mon. Wea. Rev., 141, 12411262, doi:10.1175/MWR-D-12-00064.1.

    • Search Google Scholar
    • Export Citation
  • Baba, Y., , and K. Takahashi, 2014: Dependency of stratiform precipitation on a two-moment cloud microphysical scheme in mid-latitude squall line. Atmos. Res., 138, 394413, doi:10.1016/j.atmosres.2013.12.009.

    • Search Google Scholar
    • Export Citation
  • Baker, M. B., 1993: Variability in concentrations of cloud condensation nuclei in the marine cloud-topped boundary layer. Tellus, 45B, 458472, doi:10.1034/j.1600-0889.45.issue5.1.x.

    • Search Google Scholar
    • Export Citation
  • Boucher, O., , H. Le Treut, , and M. B. Baker, 1995: Precipitation and radiation modeling in a general circulation model: Introduction of cloud microphysical processes. J. Geophys. Res., 100, 16 39516 414, doi:10.1029/95JD01382.

    • Search Google Scholar
    • Export Citation
  • Connolly, P. J., , A. J. Heymsfield, , and T. W. Choularton, 2006: Modelling the influence of rimer surface temperature on the glaciation of intense thunderstorms: The rime–splinter mechanism of ice multiplication. Quart. J. Roy. Meteor. Soc., 132, 30593077, doi:10.1256/qj.05.45.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., and et al. , 2003: RAMS 2001: Current status and future directions. Meteor. Atmos. Phys., 82, 529, doi:10.1007/s00703-001-0584-9.

    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., , M. Xue, , J. A. Milbrandt, , and M. K. Yau, 2010: Comparison of evaporation and cold pool development between single-moment and multimoment bulk microphysics schemes in idealized simulations of tornadic thunderstorms. Mon. Wea. Rev., 138, 11521171, doi:10.1175/2009MWR2956.1.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., , R. L. Walko, , B. Stevens, , and W. R. Cotton, 1998: Simulations of marine stratocumulus using a new microphysical parameterization scheme. Atmos. Res., 47–48, 505528, doi:10.1016/S0169-8095(98)00058-1.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51, 249–280, doi:10.1175/1520-0469(1994)051<0249:ADMMPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B., , W.-K. Tao, , and J. Simpson, 1995: A double-moment multiple-phase four-class bulk ice scheme. Part II: Simulations of convective storms in different large-scale environments and comparisons with other bulk parameterizations. J. Atmos. Sci., 52, 1001–1033, doi:10.1175/1520-0469(1995)052<1001:ADMMPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gilmore, M. S., , E. N. Rasmussen, , and J. M. Straka, 2004: Precipitation uncertainty due to variations in precipitation particle parameters within a simple microphysics scheme. Mon. Wea. Rev., 132, 26102627, doi:10.1175/MWR2810.1.

    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., 1997: The effects of radiative and microphysical processes on simulation warm and transition season Arctic stratus. Ph.D. dissertation, Colorado State University, 289 pp. [Available from Department of Atmospheric Science, Colorado State University, 3915 West Laport Avenue, Fort Collins, CO 80523.]

  • Hong, S.-Y., , and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S.-Y., , J. Dudhia, , and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120, doi:10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., , K.-S. S. Lim, , Y.-H. Lee, , J.-C. Ha, , H.-W. Kim, , S.-J. Ham, , and J. Dudhia, 2010: Evaluation of the WRF Double-Moment 6-Class Microphysics scheme for precipitating convection. Adv. Meteor., 2010, 707253, doi:10.1155/2010/707253.

    • Search Google Scholar
    • Export Citation
  • Jin, Y., and et al. , 2014: The impact of ice phase cloud parameterizations on tropical cyclone prediction. Mon. Wea. Rev., 142, 606625, doi:10.1175/MWR-D-13-00058.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., , T. M. Rickenbach, , S. A. Rutledge, , P. E. Ciesielski, , and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 23972418, doi:10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jung, Y., , M. Xue, , and M. Tong, 2012: Ensemble Kalman filter analyses of the 29–30 May 2004 Oklahoma tornadic thunderstorm using one- and two-moment bulk microphysics schemes, with verification against polarimetric radar data. Mon. Wea. Rev., 140, 14571475, doi:10.1175/MWR-D-11-00032.1.

    • Search Google Scholar
    • Export Citation
  • Khain, A., , A. Pokrovsky, , M. Pinsky, , A. Seifert, , and V. Phillips, 2004: Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description and possible applications. J. Atmos. Sci., 61, 29632982, doi:10.1175/JAS-3350.1.

    • Search Google Scholar
    • Export Citation
  • Lebo, Z. J., , and J. H. Seinfeld, 2011: Theoretical basis for convective invigoration due to increased aerosol concentration. Atmos. Chem. Phys., 11, 54075429, doi:10.5194/acp-11-5407-2011.

    • Search Google Scholar
    • Export Citation
  • Lebo, Z. J., , H. Morrison, , and J. H. Seinfeld, 2012: Are simulated aerosol-induced effects on deep convective clouds strongly dependent on saturation adjustment? Atmos. Chem. Phys., 12, 99419964, doi:10.5194/acp-12-9941-2012.

    • Search Google Scholar
    • Export Citation
  • Lee, S. S., , and L. J. Donner, 2011: Effects of cloud parameterization on radiation and precipitation: A comparison between single-moment microphysics and double-moment microphysics. Terr. Atmos. Ocean. Sci., 22, 403, doi:10.3319/TAO.2011.03.03.01(A).

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., , R. D. Farley, , and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, doi:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., , and P. H. Daum, 2004: Parameterization of the autoconversion process. Part I: Analytical formulation of the Kessler-type parameterizations. J. Atmos. Sci., 61, 15391548, doi:10.1175/1520-0469(2004)061<1539:POTAPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Luo, Y., , K.-M. Xu, , H. Morrison, , and G. McFarquhar, 2008: Arctic mixed-phase clouds simulated by a cloud-resolving model: Comparison with ARM observations and sensitivity to microphysics parameterizations. J. Atmos. Sci., 65, 12851303, doi:10.1175/2007JAS2467.1.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., , Q. Zhang, , M. Vaughan, , R. Marchand, , G. Stephens, , C. Trepte, , and D. Winker, 2009: A description of hydrometeor layer occurrence statistics derived from the first year of merged Cloudsat and CALIPSO data. J. Geophys. Res., 114, D00A26, doi:10.1029/2007JD009755.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., 2010: On sedimentation and advection in multimoment bulk microphysics. J. Atmos. Sci., 67, 30843094, doi:10.1175/2010JAS3341.1.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., , C. L. Ziegler, , and E. C. Bruning, 2010: Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67, 171194, doi:10.1175/2009JAS2965.1.

    • Search Google Scholar
    • Export Citation
  • Manton, M., , and W. Cotton, 1977: Formulation of approximate equations for modeling moist deep convection on the mesoscale. Colorado State University Atmospheric Science Paper 266, 62 pp.

  • Medeiros, B., , L. Nuijens, , C. Antoniazzi, , and B. Stevens, 2010: Low-latitude boundary layer clouds as seen by CALIPSO. J. Geophys. Res., 115, D23207, doi:10.1029/2010JD014437.

    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., , R. L. Walko, , J. Y. Harrington, , and W. R. Cotton, 1997: New RAMS cloud microphysics parameterization. Part II: The two-moment scheme. Atmos. Res., 45, 339, doi:10.1016/S0169-8095(97)00018-5.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., , and M. K. Yau, 2005a: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 30513064, doi:10.1175/JAS3534.1.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., , and M. K. Yau, 2005b: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 30653081, doi:10.1175/JAS3535.1.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., , and R. McTaggart-Cowan, 2010: Sedimentation-induced errors in bulk microphysics schemes. J. Atmos. Sci., 67, 39313948, doi:10.1175/2010JAS3541.1.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., , M. K. Yau, , J. Mailhot, , S. Bélair, , and R. McTaggart-Cowan, 2010: Simulation of an orographic precipitation event during IMPROVE-2. Part II: Sensitivity to the number of moments in the bulk microphysics scheme. Mon. Wea. Rev., 138, 625642, doi:10.1175/2009MWR3121.1.

    • Search Google Scholar
    • Export Citation
  • Molthan, A. L., , and B. A. Colle, 2012: Comparisons of single- and double-moment microphysics schemes in the simulation of a synoptic-scale snowfall event. Mon. Wea. Rev., 140, 29823002, doi:10.1175/MWR-D-11-00292.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., , and J. Milbrandt, 2011: Comparison of two-moment bulk microphysics schemes in idealized supercell thunderstorm simulations. Mon. Wea. Rev., 139, 11031130, doi:10.1175/2010MWR3433.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., , J. A. Curry, , and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677, doi:10.1175/JAS3446.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., , G. Thompson, , and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, doi:10.1175/2008MWR2556.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., , S. A. Tessendorf, , K. Ikeda, , and G. Thompson, 2012: Sensitivity of a simulated midlatitude squall line to parameterization of raindrop breakup. Mon. Wea. Rev., 140, 24372460, doi:10.1175/MWR-D-11-00283.1.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., , O. Peters, , and K. Hales, 2009: The transition to strong convection. J. Atmos. Sci., 66, 23672384, doi:10.1175/2009JAS2962.1.

    • Search Google Scholar
    • Export Citation
  • Onishi, R., , and K. Takahashi, 2012: A warm-bin–cold-bulk hybrid cloud microphysical model. J. Atmos. Sci., 69, 14741497, doi:10.1175/JAS-D-11-0166.1.

    • Search Google Scholar
    • Export Citation
  • Ovtchinnikov, M., , and Y. L. Kogan, 2000: An investigation of ice production mechanisms in small cumuliform clouds using a 3D model with explicit microphysics. Part I: Model description. J. Atmos. Sci., 57, 29893003, doi:10.1175/1520-0469(2000)057<2989:AIOIPM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Posselt, D. J., , S. C. van den Heever, , and G. L. Stephens, 2008: Trimodal cloudiness and tropical stable layers in simulations of radiative convective equilibrium. Geophys. Res. Lett., 35, L08802, doi:10.1029/2007GL033029.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., , and J. D. Klett, 2010: Microphysics of Clouds and Precipitation. 2nd ed. Atmospheric and Oceanographic Sciences Library, Vol. 18, Springer, 976 pp.

  • Rasmussen, R. M., , I. Geresdi, , G. Thompson, , K. Manning, , and E. Karplus, 2002: Freezing drizzle formation in stably stratified layer clouds: The role of radiative cooling of cloud droplets, cloud condensation nuclei, and ice initiation. J. Atmos. Sci., 59, 837860, doi:10.1175/1520-0469(2002)059<0837:FDFISS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reisin, T., , Z. Levin, , and S. Tzivion, 1996: Rain production in convective clouds as simulated in an axisymmetric model with detailed microphysics. Part I: Description of the model. J. Atmos. Sci., 53, 497519, doi:10.1175/1520-0469(1996)053<0497:RPICCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reisner, J., , R. M. Rasmussen, , and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124, 10711107, doi:10.1002/qj.49712454804.

    • Search Google Scholar
    • Export Citation
  • Roh, W., , and M. Satoh, 2014: Evaluation of precipitating hydrometeor parameterizations in a single-moment bulk microphysics scheme for deep convective systems over the tropical central Pacific. J. Atmos. Sci., 71, 26542673, doi:10.1175/JAS-D-13-0252.1.

    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., , and W. R. Cotton, 2004: A large-droplet mode and prognostic number concentration of cloud droplets in the Colorado State University Regional Atmospheric Modeling System (RAMS). Part I: Module descriptions and supercell test simulations. J. Appl. Meteor., 43, 182195, doi:10.1175/1520-0450(2004)043<0182:ALMAPN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., , and W. R. Cotton, 2008: A binned approach to cloud-droplet riming implemented in a bulk microphysics model. J. Appl. Meteor. Climatol., 47, 694703, doi:10.1175/2007JAMC1664.1.

    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., , and S. C. van den Heever, 2013: Developments in the CSU-RAMS aerosol model: Emissions, nucleation, regeneration, deposition, and radiation. J. Appl. Meteor. Climatol., 52, 26012622, doi:10.1175/JAMC-D-12-0312.1.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., , and K. D. Beheng, 2006: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model description. Meteor. Atmos. Phys., 92, 4566, doi:10.1007/s00703-005-0112-4.

    • Search Google Scholar
    • Export Citation
  • Shima, S., , K. Kusano, , A. Kawano, , T. Sugiyama, , and S. Kawahara, 2009: The super-droplet method for the numerical simulation of clouds and precipitation: A particle-based and probabilistic microphysics model coupled with a non-hydrostatic model. Quart. J. Roy. Meteor. Soc., 135, 13071320, doi:10.1002/qj.441.

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. Mon. Wea. Rev., 91, 99164, doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Straka, J., , and E. Mansell, 2005: A bulk microphysics parameterization with multiple ice precipitation categories. J. Appl. Meteor., 44,445466, doi:10.1175/JAM2211.1.

    • Search Google Scholar
    • Export Citation
  • Swann, H., 1998: Sensitivity to the representation of precipitating ice in CRM simulations of deep convection. Atmos. Res., 47–48, 415435, doi:10.1016/S0169-8095(98)00050-7.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and et al. , 2012: The mystery of recent stratospheric temperature trends. Nature, 491, 692697, doi:10.1038/nature11579.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., , R. M. Rasmussen, , and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542, doi:10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., , P. R. Field, , W. D. Hall, , and R. M. Rasmussen, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2001: Organization of tropical convection in low vertical wind shears: The role of cold pools. J. Atmos. Sci., 58, 16501672, doi:10.1175/1520-0469(2001)058<1650:OOTCIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • van den Heever, S. C., , and W. R. Cotton, 2004: The impact of hail size on simulated supercell storms. J. Atmos. Sci., 61, 15961609, doi:10.1175/1520-0469(2004)061<1596:TIOHSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • van den Heever, S. C., , G. L. Stephens, , and N. B. Wood, 2011: Aerosol indirect effects on tropical convection characteristics under conditions of radiative–convective equilibrium. J. Atmos. Sci., 68, 699718, doi:10.1175/2010JAS3603.1.

    • Search Google Scholar
    • Export Citation
  • Van Weverberg, K., , A. M. Vogelmann, , H. Morrison, , and J. A. Milbrandt, 2012: Sensitivity of idealized squall-line simulations to the level of complexity used in two-moment bulk microphysics schemes. Mon. Wea. Rev., 140, 18831907, doi:10.1175/MWR-D-11-00120.1.

    • Search Google Scholar
    • Export Citation
  • Van Weverberg, K., and et al. , 2013: The role of cloud microphysics parameterization in the simulation of mesoscale convective system clouds and precipitation in the tropical western Pacific. J. Atmos. Sci., 70, 11041128, doi:10.1175/JAS-D-12-0104.1.

    • Search Google Scholar
    • Export Citation
  • Van Weverberg, K., , E. Goudenhoofdt, , U. Blahak, , E. Brisson, , M. Demuzere, , P. Marbaix, , and J.-P. van Ypersele, 2014: Comparison of one-moment and two-moment bulk microphysics for high-resolution climate simulations of intense precipitation. Atmos. Res., 147–148, 145161, doi:10.1016/j.atmosres.2014.05.012.

    • Search Google Scholar
    • Export Citation
  • Wacker, U., , and A. Seifert, 2001: Evolution of rain water profiles resulting from pure sedimentation: Spectral vs. parameterized description. Atmos. Res., 58, 1939, doi:10.1016/S0169-8095(01)00081-3.

    • Search Google Scholar
    • Export Citation
  • Wacker, U., , and C. Lüpkes, 2009: On the selection of prognostic moments in parameterization schemes for drop sedimentation. Tellus, 61A, 498–511, doi:10.1111/j.1600-0870.2009.00405.x.

    • Search Google Scholar
    • Export Citation
  • Walko, R. L., , W. R. Cotton, , M. P. Meyers, , and J. Y. Harrington, 1995: New RAMS cloud microphysics parameterization part I: The single-moment scheme. Atmos. Res., 38, 2962, doi:10.1016/0169-8095(94)00087-T.

    • Search Google Scholar
    • Export Citation
  • Weisman, M., , and J. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520, doi:10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, L., , and G. W. Petty, 2010: Intercomparison of bulk microphysics schemes in model simulations of polar lows. Mon. Wea. Rev., 138, 22112228, doi:10.1175/2010MWR3122.1.

    • Search Google Scholar
    • Export Citation
  • Yussouf, N., , and D. J. Stensrud, 2012: Comparison of single-parameter and multiparameter ensembles for assimilation of radar observations using the ensemble Kalman filter. Mon. Wea. Rev., 140, 562586, doi:10.1175/MWR-D-10-05074.1.

    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., , and D. L. Hartmann, 2010: Why is longwave cloud feedback positive? J. Geophys. Res., 115, D16117, doi:10.1029/2010JD013817.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 243 243 28
PDF Downloads 109 109 22

Make It a Double? Sobering Results from Simulations Using Single-Moment Microphysics Schemes

View More View Less
  • 1 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
© Get Permissions
Restricted access

Abstract

Single-moment microphysics schemes have long enjoyed popularity for their simplicity and efficiency. However, in this article it is argued through theoretical considerations, idealized thunderstorm simulations, and radiative–convective equilibrium (RCE) simulations that the assumptions inherent in these parameterizations can induce large errors in the proper representation of clouds and their feedbacks to the atmosphere. For example, precipitation is shown to increase by 200% through changes to fixed parameters in a single-moment scheme and low-cloud fraction in the RCE simulations drops from about 15% in double-moment simulations to about 2% in single-moment simulations. This study adds to the large body of work that has shown that double-moment schemes generally outperform single-moment schemes. Therefore, it is recommended that future studies, regardless of their focus and especially those employing cloud-resolving models to simulate a realistic atmosphere, strongly consider moving to the exclusive use of multimoment microphysics schemes.

Corresponding author address: Adele L. Igel, Department of Atmospheric Science, 1371 Campus Delivery, Fort Collins, CO 80523. E-mail: adele.igel@colostate.edu

Abstract

Single-moment microphysics schemes have long enjoyed popularity for their simplicity and efficiency. However, in this article it is argued through theoretical considerations, idealized thunderstorm simulations, and radiative–convective equilibrium (RCE) simulations that the assumptions inherent in these parameterizations can induce large errors in the proper representation of clouds and their feedbacks to the atmosphere. For example, precipitation is shown to increase by 200% through changes to fixed parameters in a single-moment scheme and low-cloud fraction in the RCE simulations drops from about 15% in double-moment simulations to about 2% in single-moment simulations. This study adds to the large body of work that has shown that double-moment schemes generally outperform single-moment schemes. Therefore, it is recommended that future studies, regardless of their focus and especially those employing cloud-resolving models to simulate a realistic atmosphere, strongly consider moving to the exclusive use of multimoment microphysics schemes.

Corresponding author address: Adele L. Igel, Department of Atmospheric Science, 1371 Campus Delivery, Fort Collins, CO 80523. E-mail: adele.igel@colostate.edu
Save