• Arakawa, A., 2004: The cumulus parameterization problem: Past, present, and future. J. Climate, 17, 24932525, doi:10.1175/1520-0442(2004)017<2493:RATCPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., , J.-H. Jung, , and C.-M. Wu, 2011: Toward unification of the multiscale modeling of the atmosphere. Atmos. Chem. Phys., 11, 37313742, doi:10.5194/acp-11-3731-2011.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., , M. Steinheimer, , P. Bechtold, , and J.-F. Geleyn, 2013: A stochastic parametrization for deep convection using cellular automata. Quart. J. Roy. Meteor. Soc., 139, 15331543, doi:10.1002/qj.2108.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., , M. Milleer, , and T. N. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF Ensemble Prediction System. Quart. J. Roy. Meteor. Soc., 125, 28872908, doi:10.1002/qj.49712556006.

    • Search Google Scholar
    • Export Citation
  • Crommelin, D., , and E. Vanden-Eijnden, 2008: Subgrid-scale parameterization with conditional Markov chains. J. Atmos. Sci., 65, 26612675, doi:10.1175/2008JAS2566.1.

    • Search Google Scholar
    • Export Citation
  • Davies, L., , C. Jakob, , P. May, , V. Kumar, , and S. Xie, 2013a: Relationships between the large-scale atmosphere and the small-scale convective state for Darwin, Australia. J. Geophys. Res. Atmos., 118, 11 53411 545, doi:10.1002/jgrd.50645.

    • Search Google Scholar
    • Export Citation
  • Davies, L., and et al. , 2013b: A single-column model ensemble approach applied to the TWP-ICE experiment. J. Geophys. Res. Atmos., 118, 65446563, doi:10.1002/jgrd.50450.

    • Search Google Scholar
    • Export Citation
  • Dorrestijn, J., , D. Crommelin, , J. Biello, , and S. Böing, 2013a: A data-driven multi-cloud model for stochastic parametrization of deep convection. Philos. Trans. Roy. Soc. London,A371, doi:10.1098/rsta.2012.0374.

  • Dorrestijn, J., , D. Crommelin, , A. Siebesma, , and H. Jonker, 2013b: Stochastic parameterization of shallow cumulus convection estimated from high-resolution model data. Theor. Comput. Fluid Dyn., 27, 133148, doi:10.1007/s00162-012-0281-y.

    • Search Google Scholar
    • Export Citation
  • Flato, G., and et al. , 2014: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. Stocker et al., Eds., Cambridge University Press, 741–866.

  • Frenkel, Y., , A. Majda, , and B. Khouider, 2013: Stochastic and deterministic multicloud parameterizations for tropical convection. Climate Dyn., 41, 15271551, doi:10.1007/s00382-013-1678-z.

    • Search Google Scholar
    • Export Citation
  • Gan, G., , C. Ma, , and J. Wu, 2007: Data Clustering: Theory, Algorithms, and Applications. 3rd ed. SA-SIAM Series on Statistics and Applied Probability, SIAM, 466 pp.

  • Johnson, R., , T. Rickenbach, , S. Rutledge, , P. Ciesielski, , and W. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 23972418, doi:10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., 2014: A coarse grained stochastic multi-type particle interacting model for tropical convection: Nearest neighbour interactions. Commun. Math. Sci., 12, 13791407, doi:10.4310/CMS.2014.v12.n8.a1.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., , and A. Majda, 2006: A simple multicloud parameterization for convectively coupled tropical waves. Part I: Linear analysis. J. Atmos. Sci., 63, 13081323, doi:10.1175/JAS3677.1.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., , J. Biello, , and A. J. Majda, 2010: A stochastic multicloud model for tropical convection. Commun. Math. Sci., 8, 187216, doi:10.4310/CMS.2010.v8.n1.a10.

    • Search Google Scholar
    • Export Citation
  • Kumar, V., , C. Jakob, , A. Protat, , P. T. May, , and L. Davies, 2013: The four cumulus cloud modes and their progression during rainfall events: A C-band polarimetric radar perspective. J. Geophys. Res. Atmos., 118, 83758389, doi:10.1002/jgrd.50640.

    • Search Google Scholar
    • Export Citation
  • Kwasniok, F., 2012: Data-based stochastic subgrid-scale parametrization: An approach using cluster-weighted modelling. Philos. Trans. Roy. Soc. London, A370, 10611086, doi:10.1098/rsta.2011.0384.

    • Search Google Scholar
    • Export Citation
  • Lang, S., , W.-K. Tao, , J. Simpson, , and B. Ferrier, 2003: Modeling of convective–stratiform precipitation processes: Sensitivity to partitioning methods. J. Appl. Meteor., 42, 505527, doi:10.1175/1520-0450(2003)042<0505:MOCSPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., and et al. , 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19, 26652690, doi:10.1175/JCLI3735.1.

    • Search Google Scholar
    • Export Citation
  • Lin, J. W.-B., , and J. D. Neelin, 2000: Influence of a stochastic moist convective parameterization on tropical climate variability. Geophys. Res. Lett., 27, 36913694, doi:10.1029/2000GL011964.

    • Search Google Scholar
    • Export Citation
  • Lin, J. W.-B., , and J. D. Neelin, 2003: Toward stochastic deep convective parameterization in general circulation models. Geophys. Res. Lett., 30, 1162, doi:10.1029/2002GL016203.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E., 1996: Predictability—A problem partly solved. Proc. Seminar on Predictability, Reading, United Kingdom, ECMWF, 40–58.

  • MacQueen, J., 1967: Some methods for classification and analysis of multivariate observations. Proc. Fifth Berkeley Symp. Mathematical Statistics and Probability, Berkeley, CA, Vol. 1, Statistical Laboratory of the University of California, Berkeley, 281297.

  • Majda, A. J., , S. N. Stechmann, , and B. Khouider, 2007: Madden–Julian oscillation analog and intraseasonal variability in a multicloud model above the equator. Proc. Natl. Acad. Sci. USA, 104, 99199924, doi:10.1073/pnas.0703572104.

    • Search Google Scholar
    • Export Citation
  • Mapes, B., , S. Tulich, , J. Lin, , and P. Zuidema, 2006: The mesoscale convective life cycle: Building block or prototype for large-scale tropical waves? Dyn. Atmos. Oceans, 42, 329, doi:10.1016/j.dynatmoce.2006.03.003.

    • Search Google Scholar
    • Export Citation
  • May, P., , and A. Ballinger, 2007: The statistical characteristics of convective cells in a monsoon regime (Darwin, Northern Australia). Mon. Wea. Rev., 135, 8292, doi:10.1175/MWR3273.1.

    • Search Google Scholar
    • Export Citation
  • Möbis, B., , and B. Stevens, 2012: Factors controlling the position of the Intertropical Convergence Zone on an aquaplanet. J. Adv. Model. Earth Syst.,4, M00A04, doi:10.1029/2012MS000199.

  • Palmer, T. N., 2001: A nonlinear dynamical perspective on model error: A proposal for non-local stochastic-dynamic parametrization in weather and climate prediction models. Quart. J. Roy. Meteor. Soc., 127, 279304, doi:10.1002/qj.49712757202.

    • Search Google Scholar
    • Export Citation
  • Peters, K., , C. Jakob, , L. Davies, , B. Khouider, , and A. Majda, 2013: Stochastic behavior of tropical convection in observations and a multicloud model. J. Atmos. Sci., 70, 35563575, doi:10.1175/JAS-D-13-031.1.

    • Search Google Scholar
    • Export Citation
  • Plant, R., , and G. Craig, 2008: A stochastic parameterization for deep convection based on equilibrium statistics. J. Atmos. Sci., 65, 87105, doi:10.1175/2007JAS2263.1.

    • Search Google Scholar
    • Export Citation
  • Press, W. H., , S. Teukolsky, , W. Vetterling, , and B. Flannery, 1992: Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, 994 pp.

  • Randall, D., , M. Khairoutdinov, , A. Arakawa, , and W. Grabowski, 2003: Breaking the cloud parameterization deadlock. Bull. Amer. Meteor. Soc., 84, 15471564, doi:10.1175/BAMS-84-11-1547.

    • Search Google Scholar
    • Export Citation
  • Sakradzija, M., , A. Seifert, , and T. Heus, 2014: Fluctuations in a quasi-stationary shallow cumulus cloud ensemble. Nonlin. Processes Geophys. Discuss., 1, 12231282, doi:10.5194/npgd-1-1223-2014.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A., 1998: Shallow cumulus convection. Buoyant Convection in Geophysical Flows, E. Plate et al., Eds., Kluwer, 441–486.

  • Teixeira, J., , and C. Reynolds, 2008: Stochastic nature of physical parameterizations in ensemble prediction: A stochastic convection approach. Mon. Wea. Rev., 136, 483496, doi:10.1175/2007MWR1870.1.

    • Search Google Scholar
    • Export Citation
  • Wilks, D., 2005: Effects of stochastic parameterizations in the Lorenz ‘96 system. Quart. J. Roy. Meteor. Soc., 131, 389407, doi:10.1256/qj.04.03.

    • Search Google Scholar
    • Export Citation
  • Yu, X., , and T.-Y. Lee, 2010: Role of convective parameterization in simulations of a convection band at grey-zone resolutions. Tellus, 62A, 617632, doi:10.1111/j.1600-0870.2010.00470.x.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 34 34 5
PDF Downloads 19 19 4

Stochastic Parameterization of Convective Area Fractions with a Multicloud Model Inferred from Observational Data

View More View Less
  • 1 CWI, Amsterdam, Netherlands
  • | 2 Royal Netherlands Meteorological Institute (KNMI), De Bilt, and Delft University of Technology, Delft, Netherlands
  • | 3 Delft University of Technology, Delft, Netherlands
  • | 4 ARC Centre of Excellence for Climate System Science, Monash University, Melbourne, Victoria, Australia
© Get Permissions
Restricted access

Abstract

Observational data of rainfall from a rain radar in Darwin, Australia, are combined with data defining the large-scale dynamic and thermodynamic state of the atmosphere around Darwin to develop a multicloud model based on a stochastic method using conditional Markov chains. The authors assign the radar data to clear sky, moderate congestus, strong congestus, deep convective, or stratiform clouds and estimate transition probabilities used by Markov chains that switch between the cloud types and yield cloud-type area fractions. Cross-correlation analysis shows that the mean vertical velocity is an important indicator of deep convection. Further, it is shown that, if conditioned on the mean vertical velocity, the Markov chains produce fractions comparable to the observations. The stochastic nature of the approach turns out to be essential for the correct production of area fractions. The stochastic multicloud model can easily be coupled to existing moist convection parameterization schemes used in general circulation models.

Corresponding author address: Jesse Dorrestijn, CWI, P.O. Box 94079, 1090 GB, Amsterdam, Netherlands. E-mail: j.dorrestijn@cwi.nl

Abstract

Observational data of rainfall from a rain radar in Darwin, Australia, are combined with data defining the large-scale dynamic and thermodynamic state of the atmosphere around Darwin to develop a multicloud model based on a stochastic method using conditional Markov chains. The authors assign the radar data to clear sky, moderate congestus, strong congestus, deep convective, or stratiform clouds and estimate transition probabilities used by Markov chains that switch between the cloud types and yield cloud-type area fractions. Cross-correlation analysis shows that the mean vertical velocity is an important indicator of deep convection. Further, it is shown that, if conditioned on the mean vertical velocity, the Markov chains produce fractions comparable to the observations. The stochastic nature of the approach turns out to be essential for the correct production of area fractions. The stochastic multicloud model can easily be coupled to existing moist convection parameterization schemes used in general circulation models.

Corresponding author address: Jesse Dorrestijn, CWI, P.O. Box 94079, 1090 GB, Amsterdam, Netherlands. E-mail: j.dorrestijn@cwi.nl
Save