• Adames, A. F., , and J. M. Wallace, 2014: Three-dimensional structure and evolution of the MJO and its relation to the mean flow. J. Atmos. Sci., 71, 2007–2026, doi:10.1175/JAS-D-13-0254.1.

    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., , S. Lee, , and S. B. Feldstein, 2004: Synoptic view of the North Atlantic Oscillation. J. Atmos. Sci., 61, 121144, doi:10.1175/1520-0469(2004)061<0121:SVOTNA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Branstator, G. W., 2002: Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic Oscillation. J. Climate, 15, 18931910, doi:10.1175/1520-0442(2002)015<1893:CTTJSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cassou, C., 2008: Intraseasonal interaction between the Madden–Julian Oscillation and the North Atlantic Oscillation. Nature, 455, 523527, doi:10.1038/nature07286.

    • Search Google Scholar
    • Export Citation
  • Christiansen, B., 2007: Atmospheric circulation regimes: Can cluster analysis provide the number? J. Climate, 20, 22292250, doi:10.1175/JCLI4107.1.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., , S. C. Bates, , B. P. Briegleb, , S. R. Jayne, , M. Jochum, , W. G. Large, , S. Peacock, , and S. G. Yeager, 2012: The CCSM4 ocean component. J. Climate, 25, 1361–1389, doi:10.1175/JCLI-D-11-00091.1.

    • Search Google Scholar
    • Export Citation
  • DelSole, T., , and P. Chang, 2003: Predictable component analysis, canonical correlation analysis, and autoregressive models. J. Atmos. Sci., 60, 409416, doi:10.1175/1520-0469(2003)060<0409:PCACCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deng, Y., , and T. Jiang, 2011: Intraseasonal modulation of the North Pacific storm track by tropical convection in boreal winter. J. Climate, 24, 11221137, doi:10.1175/2010JCLI3676.1.

    • Search Google Scholar
    • Export Citation
  • Duchon, C., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 10161022, doi:10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ferranti, L., , T. N. Palmer, , F. Molteni, , and E. Klinker, 1990: Tropical-extratropical interaction associated with the 30–60 day oscillation and its impact on medium and extended range prediction. J. Atmos. Sci., 47, 21772199, doi:10.1175/1520-0469(1990)047<2177:TEIAWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Franzke, C., , S. Lee, , and S. B. Feldstein, 2004: Is the North Atlantic Oscillation a breaking wave? J. Atmos. Sci., 61, 145160, doi:10.1175/1520-0469(2004)061<0145:ITNAOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., , and H. Lin, 2013: Tropical–extratropical interactions of instraseasonal oscillations. J. Atmos. Sci., 70, 31803197, doi:10.1175/JAS-D-12-0302.1.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and et al. , 2011: The Community Climate System Model Version 4. J. Climate, 24, 49734991, doi:10.1175/2011JCLI4083.1.

    • Search Google Scholar
    • Export Citation
  • Grise, K. M., , S.-W. Son, , and J. R. Gyakum, 2013: Intraseasonal and interannual variability in North American storm tracks and its relationship to equatorial Pacific variability. Mon. Wea. Rev., 141, 36103625, doi:10.1175/MWR-D-12-00322.1.

    • Search Google Scholar
    • Export Citation
  • Kunio, Y., , C. Zhang, , and C. N. Long, 2013: Tracking pulses of the Madden–Julian Oscillation. Bull. Amer. Meteor. Soc., 94, 18711891, doi:10.1175/BAMS-D-12-00157.1.

    • Search Google Scholar
    • Export Citation
  • Lappen, C.-L., , and C. Schumacher, 2012: Heating in the tropical atmosphere: What level of detail is critical for accurate MJO simulations in GCMs? Climate Dyn., 39, 25472568, doi:10.1007/s00382-012-1327-y.

    • Search Google Scholar
    • Export Citation
  • Lee, Y.-Y., , and G.-H. Lim, 2012: Dependency of the North Pacific winter storm tracks on the zonal distribution of MJO convection. J. Geophys. Res.,117, D14101, doi:10.1029/2011JD016417.

  • Lin, H., , G. Brunet, , and J. Derome, 2008: Forecast skill of the Madden–Julian oscillation in two Canadian atmospheric models. Mon. Wea. Rev., 136, 41304149, doi:10.1175/2008MWR2459.1.

    • Search Google Scholar
    • Export Citation
  • Lin, H., , G. Brunet, , and J. Derome, 2009: An observed connection between the North Atlantic Oscillation and the Madden–Julian oscillation. J. Climate, 22, 364380, doi:10.1175/2008JCLI2515.1.

    • Search Google Scholar
    • Export Citation
  • Lin, H., , G. Brunet, , and R. Mo, 2010: Impact of the Madden–Julian oscillation on wintertime precipitation in Canada. Mon. Wea. Rev., 138, 38223839, doi:10.1175/2010MWR3363.1.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, doi:10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1994: Observations of the 40–50-daytropical oscillation—A review. Mon. Wea. Rev., 122, 814837, doi:10.1175/1520-0493(1994)122<0814:OOTDTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., , B. J. Hoskins, , and M. Masutani, 2004: The global response to tropical heating in the Madden–Julian Oscillation during northern winter. Quart. J. Roy. Meteor. Soc., 130, 19912011, doi:10.1256/qj.02.123.

    • Search Google Scholar
    • Export Citation
  • Michelangeli, P.-A., , R. Vautard, , and B. Legras, 1995: Weather regimes: Reccurrence and quasi-stationarity. J. Atmos. Sci., 52, 12371256, doi:10.1175/1520-0469(1995)052<1237:WRRAQS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 1999: A Nonlinear dynamical perspective on climate prediction. J. Climate, 12, 575591, doi:10.1175/1520-0442(1999)012<0575:ANDPOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Riddle, E. E., , M. B. Stone, , N. C. Johnson, , M. L. L’Heureux, , D. C. Collins, , and S. B. Feldstein, 2013: The impact of the MJO on clusters of wintertime circulation anomalies over the North American region. Climate Dyn., 40, 17491766, doi:10.1007/s00382-012-1493-y.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., , and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251, doi:10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., , R. A. Houze Jr., , and I. Kraucunas, 2004: The tropical dynamical response to latent heating estimates derived from the TRMM precipitation radar. J. Atmos. Sci., 61, 13411358, doi:10.1175/1520-0469(2004)061<1341:TTDRTL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., , and S.-W. Son, 2012: The global atmospheric circulation response to tropical diabatic heating associated with the Madden–Julian Oscillation during northern winter. J. Atmos. Sci., 69, 7996, doi:10.1175/2011JAS3686.1.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., , J. M. Wallace, , and G. W. Branstator, 1983: Barotropic wave propagation and instability, and atmospheric teleconnection patterns. J. Atmos. Sci., 40, 13631392, doi:10.1175/1520-0469(1983)040<1363:BWPAIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Straus, D. M., 1983: On the role of the seasonal cycle. J. Atmos. Sci., 40, 303313, doi:10.1175/1520-0469(1983)040<0303:OTROTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Straus, D. M., 2010: Synoptic-eddy feedbacks and circulation regime analysis. Mon. Wea. Rev., 138, 40264034, doi:10.1175/2010MWR3333.1.

    • Search Google Scholar
    • Export Citation
  • Straus, D. M., , S. Corti, , and F. Molteni, 2007: Circulation regimes: Chaotic variability versus SST-forced predictability. J. Climate, 20, 22512272, doi:10.1175/JCLI4070.1.

    • Search Google Scholar
    • Export Citation
  • Subramanian, A., , M. Jochum, , A. J. Miller, , R. Murtugudde, , R. N. Neale, , and D. E. Waliser, 2011: The Madden–Julian oscillation in CCSM4. J. Climate, 24, 62616282, doi:10.1175/JCLI-D-11-00031.1.

    • Search Google Scholar
    • Export Citation
  • Vautard, R., 1990: Multiple weather regimes over the North Atlantic: Analysis of precursors and successors. Mon. Wea. Rev., 118, 20562081, doi:10.1175/1520-0493(1990)118<2056:MWROTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., , and F. Molteni, 2010: Simulation of the Madden–Julian Oscillation and its teleconnections in the ECMWF forecast system. Quart. J. Roy. Meteor. Soc., 136, 842855, doi:10.1002/qj.623.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., , and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian Oscillation. Rev. Geophys., 43, RG2003, d, doi:10.1029/2004RG000158.

  • Zhou, S., , and A. J. Miller, 2005: The interaction of the Madden–Julian Oscillation and the Artic Oscillation. J. Climate, 18, 143159, doi:10.1175/JCLI3251.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 53 53 9
PDF Downloads 10 10 1

The MJO Cycle Forcing of the North Atlantic Circulation: Intervention Experiments with the Community Earth System Model

View More View Less
  • 1 George Mason University, Fairfax, Virginia
  • | 2 APEC Climate Center, Busan, South Korea
  • | 3 Texas A&M University, College Station, Texas
© Get Permissions
Restricted access

Abstract

A three-dimensional evolution of Madden–Julian oscillation (MJO) diabatic heating for October–March from satellite data is constructed: the heating propagates eastward for three cycles, modulated by the likelihood for a given MJO phase to occur on a given calendar day. This heating is added to the temperature tendencies of each member of an ensemble of 48 (1 October–31 March) simulations with the Community Earth System Model.

The leading two most predictable modes of the planetary wave vertically integrated total (added plus model generated) heating capture 81% of the ensemble-mean variance and form an eastward-propagating oscillation with very high signal-to-noise ratio. The two most predictable modes of the extratropical Northern Hemisphere 200-hPa height form an oscillation, as do those of the 300-hPa height tendency due to synoptic vorticity flux convergence, the 200-hPa Rossby wave source, and the envelope transient kinetic energy. The North Atlantic Oscillation (NAO+) occurs 15–25 days after the MJO convection crosses the 90°E meridian, supported by synoptic vorticity flux convergence and a distinct pattern of Rossby wave source.

The daily North Atlantic circulation anomalies are categorized into four circulation regimes with a cluster analysis. The NAO+ and NAO− are equally likely in the control model runs, but the NAO+ is 10% more likely in the model runs with heating, compared to a difference of 14% in reanalyses. The daily occurrence of the NAO+ regime in the heating ensemble shows maxima at times when the leading two optimal modes of height also indicate NAO+ but also shows maxima at other times.

Corresponding author address: David M. Straus, George Mason University, MSN 2B3, 4400 University Dr., Fairfax, VA 22030. E-mail: dstraus@gmu.edu

Abstract

A three-dimensional evolution of Madden–Julian oscillation (MJO) diabatic heating for October–March from satellite data is constructed: the heating propagates eastward for three cycles, modulated by the likelihood for a given MJO phase to occur on a given calendar day. This heating is added to the temperature tendencies of each member of an ensemble of 48 (1 October–31 March) simulations with the Community Earth System Model.

The leading two most predictable modes of the planetary wave vertically integrated total (added plus model generated) heating capture 81% of the ensemble-mean variance and form an eastward-propagating oscillation with very high signal-to-noise ratio. The two most predictable modes of the extratropical Northern Hemisphere 200-hPa height form an oscillation, as do those of the 300-hPa height tendency due to synoptic vorticity flux convergence, the 200-hPa Rossby wave source, and the envelope transient kinetic energy. The North Atlantic Oscillation (NAO+) occurs 15–25 days after the MJO convection crosses the 90°E meridian, supported by synoptic vorticity flux convergence and a distinct pattern of Rossby wave source.

The daily North Atlantic circulation anomalies are categorized into four circulation regimes with a cluster analysis. The NAO+ and NAO− are equally likely in the control model runs, but the NAO+ is 10% more likely in the model runs with heating, compared to a difference of 14% in reanalyses. The daily occurrence of the NAO+ regime in the heating ensemble shows maxima at times when the leading two optimal modes of height also indicate NAO+ but also shows maxima at other times.

Corresponding author address: David M. Straus, George Mason University, MSN 2B3, 4400 University Dr., Fairfax, VA 22030. E-mail: dstraus@gmu.edu
Save