• Blackadar, A. K., 1957: Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 38, 283290.

    • Search Google Scholar
    • Export Citation
  • Bonner, W. D., 1968: Climatology of the low level jet. Mon. Wea. Rev., 96, 833850, doi:10.1175/1520-0493(1968)096<0833:COTLLJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bonner, W. D., , and J. Paegle, 1970: Diurnal variations in boundary layer winds over the south-central United States in summer. Mon. Wea. Rev., 98, 735744, doi:10.1175/1520-0493(1970)098<0735:DVIBLW>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Burk, S. D., , and W. T. Thompson, 1996: The summertime low-level jet and marine boundary layer structure along the California coast. Mon. Wea. Rev., 124, 668686, doi:10.1175/1520-0493(1996)124<0668:TSLLJA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., , and D. R. Novak, 2010: The New York Bight jet: Climatology and dynamical evolution. Mon. Wea. Rev., 138, 23852404, doi:10.1175/2009MWR3231.1.

    • Search Google Scholar
    • Export Citation
  • Drobinski, P., , R. Rotunno, , and T. Dubos, 2011: Linear theory of the sea breeze in a thermal wind. Quart. J. Roy. Meteor. Soc., 137, 16021609, doi:10.1002/qj.847.

    • Search Google Scholar
    • Export Citation
  • Du, Y., , and R. Rotunno, 2014: A simple analytical model of the nocturnal low-level jet over the Great Plains of the United States. J. Atmos. Sci., 71, 3674–3683, doi:10.1175/JAS-D-14-0060.1.

    • Search Google Scholar
    • Export Citation
  • Du, Y., , Q. H. Zhang, , Y. Yue, , and Y. M. Yang, 2012: Characteristics of low-level jets in Shanghai during the 2008–2009 warm seasons as inferred from wind profiler radar data. J. Meteor. Soc. Japan, 90, 891903, doi:10.2151/jmsj.2012-603.

    • Search Google Scholar
    • Export Citation
  • Du, Y., , Q. H. Zhang, , Y. L. Chen, , Y. Y. Zhao, , and X. Wang, 2014: Numerical simulations of spatial distributions and diurnal variations of low-level jets in China during early summer. J. Climate, 27, 57475767, doi:10.1175/JCLI-D-13-00571.1.

    • Search Google Scholar
    • Export Citation
  • Haurwitz, B., 1947: Comments on the sea-breeze circulation. J. Meteor., 4, 18, doi:10.1175/1520-0469(1947)004<0001:COTSBC>2.0.CO;2.

  • Holton, J. R., 1967: The diurnal boundary layer wind oscillation above sloping terrain. Tellus, 19, 199205, doi:10.1111/j.2153-3490.1967.tb01473.x.

    • Search Google Scholar
    • Export Citation
  • Huang, N. E., , and S. S. Shen, Eds., 2005: Hilbert–Huang Transform and Its Applications. Interdisciplinary Mathematical Sciences, Vol. 5, World Scientific, 324 pp.

  • Huang, W. R., , J. C. Chan, , and S. Y. Wang, 2010: A planetary-scale land–sea breeze circulation in East Asia and the western North Pacific. Quart. J. Roy. Meteor. Soc., 136, 15431553, doi:10.1002/qj.663.

    • Search Google Scholar
    • Export Citation
  • Jiang, Q., , S. Wang, , and L. O’Neill, 2010: Some insights into the characteristics and dynamics of the Chilean low-level coastal jet. Mon. Wea. Rev., 138, 31853206, doi:10.1175/2010MWR3368.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., , N. C. Lau, , I. M. Held, , and J. J. Ploshay, 2007: Mechanisms of the Great Plains low-level jet as simulated in an AGCM. J. Atmos. Sci., 64, 532547, doi:10.1175/JAS3847.1.

    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., , S.-P. Xie, , and H. Nakamura, 2011: Dynamics of interannual variability in summer precipitation over East Asia. J. Climate, 24, 54355453, doi:10.1175/2011JCLI4099.1.

    • Search Google Scholar
    • Export Citation
  • Liu, H. B., , L. J. Li, , and B. Wang, 2012: Low-level jets over southeast China: The warm season climatology of the summer of 2003. Atmos. Oceanic Sci. Lett., 5, 394400.

    • Search Google Scholar
    • Export Citation
  • Paegle, J., , and G. E. Rasch, 1973: Three-dimensional characteristics of diurnally varying boundary-layer flows. Mon. Wea. Rev., 101, 746756, doi:10.1175/1520-0493(1973)101<0746:TCODVB>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Parish, T. R., , and L. D. Oolman, 2010: On the role of sloping terrain in the forcing of the Great Plains low-level jet. J. Atmos. Sci., 67, 26902699, doi:10.1175/2010JAS3368.1.

    • Search Google Scholar
    • Export Citation
  • Rife, D. L., , J. O. Pinto, , A. J. Monaghan, , C. A. Davis, , and J. R. Hannan, 2010: Global distribution and characteristics of diurnally varying low-level jets. J. Climate, 23, 50415064, doi:10.1175/2010JCLI3514.1.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., 1983: On the linear theory of the land and sea breeze. J. Atmos. Sci., 40, 19992009, doi:10.1175/1520-0469(1983)040<1999:OTLTOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schmidt, F. H., 1947: An elementary theory of the land- and sea-breeze circulation. J. Meteor., 4, 920, doi:10.1175/1520-0469(1947)004<0009:AETOTL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., , and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485, doi:10.1016/j.jcp.2007.01.037.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., 1996: Importance of low-level jets to climate: A review. J. Climate, 9, 16981711, doi:10.1175/1520-0442(1996)009<1698:IOLLJT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thorpe, A. J., , and T. H. Guymer, 1977: The nocturnal jet. Quart. J. Roy. Meteor. Soc., 103, 633653.

  • Wang, D., , Y. Zhang, , and A. Huang, 2013: Climatic features of the south-westerly low-level jet over southeast China and its association with precipitation over east China. Asia-Pac. J. Atmos. Sci., 49, 259270, doi:10.1007/s13143-013-0025-y.

    • Search Google Scholar
    • Export Citation
  • Wei, W., , B. G. Wu, , X. X. Ye, , H. X. Wang, , and H. S. Zhang, 2013: Characteristics and mechanisms of low-level jets in the Yangtze River Delta of China. Bound.-Layer Meteor., 149, 403424, doi:10.1007/s10546-013-9852-8.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., , X. Bian, , and S. Zhong, 1997: Low-level jet climatology from enhanced rawinsonde observations at a site in the southern Great Plains. J. Appl. Meteor., 36, 13631376, doi:10.1175/1520-0450(1997)036<1363:LLJCFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yu, R., , J. Li, , and H. Chen, 2009: Diurnal variation of surface wind over central eastern China. Climate Dyn., 33, 10891097, doi:10.1007/s00382-008-0478-3.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., , S.-L. Zhang, , and S. J. Weaver, 2006: Low-level jets over the Mid-Atlantic states: Warm-season climatology and a case study. J. Appl. Meteor. Climatol., 45, 194209, doi:10.1175/JAM2313.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 35 35 7
PDF Downloads 47 47 7

Analysis of WRF-Simulated Diurnal Boundary Layer Winds in Eastern China Using a Simple 1D Model

View More View Less
  • 1 Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China, and National Center for Atmospheric Research,* Boulder, Colorado
  • | 2 National Center for Atmospheric Research,* Boulder, Colorado
  • | 3 Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China
© Get Permissions
Restricted access

Abstract

The low-level diurnal winds for different locations of eastern China are documented using the June 2006–11 hourly model data simulated with the Weather Research and Forecasting (WRF) mesoscale model with a 9-km horizontal resolution. A simple 1D model, including both diurnal thermal forcing and diurnally varying boundary layer friction, is found to explain important features of the WRF-simulated diurnal boundary layer winds in eastern China. For example, in northeastern China, at a similar latitude, the maximum velocity parallel to the coastline at a longitude over the ocean occurs earlier than the maximum velocity parallel to the inland chain of coastline-parallel mountains at a longitude over land. This difference can be identified with the well-known Blackadar effect over the land. Off the eastern coast of China, the diurnal winds for different latitudes over the ocean vary in both phase and amplitude, consistent with expectations based on the simple 1D model.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Dr. Richard Rotunno, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. E-mail: rotunno@ucar.edu

Abstract

The low-level diurnal winds for different locations of eastern China are documented using the June 2006–11 hourly model data simulated with the Weather Research and Forecasting (WRF) mesoscale model with a 9-km horizontal resolution. A simple 1D model, including both diurnal thermal forcing and diurnally varying boundary layer friction, is found to explain important features of the WRF-simulated diurnal boundary layer winds in eastern China. For example, in northeastern China, at a similar latitude, the maximum velocity parallel to the coastline at a longitude over the ocean occurs earlier than the maximum velocity parallel to the inland chain of coastline-parallel mountains at a longitude over land. This difference can be identified with the well-known Blackadar effect over the land. Off the eastern coast of China, the diurnal winds for different latitudes over the ocean vary in both phase and amplitude, consistent with expectations based on the simple 1D model.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Dr. Richard Rotunno, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. E-mail: rotunno@ucar.edu
Save