• Adler, R. F., and et al. , 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ao, C. O., , T. K. Meehan, , G. A. Hajj, , A. J. Mannucci, , and G. Beyerle, 2003: Lower-tropospheric refractivity bias in GPS occultation retrievals. J. Geophys. Res., 108, 4577, doi:10.1029/2002JD003216.

    • Search Google Scholar
    • Export Citation
  • Aonashi, K., and et al. , 2009: GSMaP passive, microwave precipitation retrieval algorithm: Algorithm description and validation. J. Meteor. Soc. Japan, 87A, 119136, doi:10.2151/jmsj.87A.119.

    • Search Google Scholar
    • Export Citation
  • Barnes, H. C., , and R. A. Houze Jr., 2013: The precipitating cloud population of the Madden-Julian Oscillation over the Indian and west Pacific Ocean. J. Geophys. Res. Atmos., 118, 69967023, doi:10.1002/jgrd.50375.

    • Search Google Scholar
    • Export Citation
  • Benedict, J., , and D. A. Randall, 2007: Observed characteristics of the MJO relative to maximum rainfall. J. Atmos. Sci., 64, 23322354, doi:10.1175/JAS3968.1.

    • Search Google Scholar
    • Export Citation
  • Chikira, M., 2014: Easward-propagating instraseasonal oscillation represented by Chikira–Sugiyama cumulus parameterization. Part II: Understanding moisture variation under weak temperature gradient balance. J. Atmos. Sci., 71, 615639, doi:10.1175/JAS-D-13-038.1.

    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., , L. Hartten, , and R. H. Johnson, 1997: Impacts of merging profiler and rawinsonde winds on TOGA COARE analyses. J. Atmos. Oceanic Technol., 14, 12641279, doi:10.1175/1520-0426(1997)014<1264:IOMPAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., , R. H. Johnson, , P. T. Haertel, , and J. Wang, 2003: Corrected TOGA COARE sounding humidity data: Impact on diagnosed properties of convection and climate over the warm pool. J. Climate, 16, 23702384, doi:10.1175/2790.1.

    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., and et al. , 2014a: Quality controlled upper-air sounding dataset for DYNAMO/CINDY/AMIE: Development and corrections. J. Atmos. Oceanic Technol., 31, 741764, doi:10.1175/JTECH-D-13-00165.1.

    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., , R. H. Johnson, , K. Yoneyama, , and R. K. Taft, 2014b: Mitigation of Sri Lanka island effects in Colombo sounding data its impact on DYNAMO analyses. J. Meteor. Soc. Japan, 92, 385–405, doi:10.2151/jmsj.2014-407.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., , Y. Chen, , D. Kim, , and M.-S. Yao, 2012: The MJO transition from shallow to deep convection in CloudSat/CALIPSO and GISS GCM simulations. J. Climate, 25, 37553770, doi:10.1175/JCLI-D-11-00384.1.

    • Search Google Scholar
    • Export Citation
  • DePasquale, A., , C. Schumacher, , and A. Rapp, 2014: Radar observations of MJO and Kelvin wave interactions during DYNAMO/CINDY2011/AMIE. J. Geophys. Res. Atmos., 119, 63476367, doi:10.1002/2013JD021031.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., , and M. Bister, 1996: Moist convective velocity and buoyancy scales. J. Atmos. Sci., 53, 32763285, doi:10.1175/1520-0469(1996)053<3276:MCVABS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., , E. F. Bradley, , D. P. Rogers, , J. B. Edson, , and G. S. Young, 1996: Bulk parameterization of air-sea fluxes for TOGA COARE. J. Geophys. Res., 101, 37473764, doi:10.1029/95JC03205.

    • Search Google Scholar
    • Export Citation
  • Feng, Z., , S. A. McFarlane, , C. Schumacher, , S. Ellis, , and N. Bharadwaj, 2014: Constructing a merged cloud–precipitation radar dataset for tropical clouds during the DYNAMO/AMIE experiment on Addu Atoll. J. Atmos. Oceanic Technol., 31, 10211042, doi:10.1175/JTECH-D-13-00132.1.

    • Search Google Scholar
    • Export Citation
  • Figa-Saldaña, J., , J. J. W. Wilson, , E. Attema, , R. Gelsthorpe, , M. R. Drinkwater, , and A. Stoffelen, 2002: The advanced scatterometer (ASCAT) on the meteorological operational (MetOp) platform: A follow on for European wind scatterometers. Can. J. Remote Sens., 28, 404412, doi:10.5589/m02-035.

    • Search Google Scholar
    • Export Citation
  • Funk, A., , C. Schumacher, , and J. Awaka, 2013: Analysis of rain classifications over the tropics by version 7 of the TRMM PR 2A23 algorithm. J. Meteor. Soc. Japan, 91, 257272, doi:10.2151/jmsj.2013-302.

    • Search Google Scholar
    • Export Citation
  • Gosnell, R., , C. W. Fairall, , and P. J. Webster, 1995: The sensible heat of rainfall in the tropical ocean. J. Geophys. Res., 100, 18 43718 442, doi:10.1029/95JC01833.

    • Search Google Scholar
    • Export Citation
  • Gottschalck, J., , P. E. Roundy, , C. J. Schreck III, , A. Vintzileos, , and C. Zhang, 2013: Large-scale atmospheric and oceanic conditions during the 2011–12 DYNAMO field campaign. Mon. Wea. Rev., 141, 41734196, doi:10.1175/MWR-D-13-00022.1.

    • Search Google Scholar
    • Export Citation
  • Haertel, P. T., , G. N. Kiladis, , A. Denno, , and T. M. Rickenbach, 2008: Vertical-mode decompositions of 2-day waves and the Madden–Julian oscillation. J. Atmos. Sci., 65, 813833, doi:10.1175/2007JAS2314.1.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., , H. H. Hendon, , and R. A. Houze Jr., 1984: Some implications of the mesoscale circulations in tropical cloud clusters for large-scale dynamics and climate. J. Atmos. Sci., 41, 113121, doi:10.1175/1520-0469(1984)041<0113:SIOTMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., , M. E. Ockert-Bell, , and M. L. Michelsen, 1992: The effect of cloud type on the Earth’s energy balance: Global analysis. J. Climate, 5, 12811304, doi:10.1175/1520-0442(1992)005<1281:TEOCTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., , and B. Stevens, 2013: Preconditioning deep convection with cumulus congestus. J. Atmos. Sci., 70, 448464, doi:10.1175/JAS-D-12-089.1.

    • Search Google Scholar
    • Export Citation
  • Holmlund, K., , C. S. Velden, , and M. Rohn, 2001: Enhanced automated quality control applied to high-density satellite-derived winds. Mon. Wea. Rev., 129, 517529, doi:10.1175/1520-0493(2001)129<0517:EAQCAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., , R. F. Adler, , D. T. Bolvin, , G. Gu, , E. J. Nelkin, , K. P. Bowman, , E. F. Stocker, , and D. B. Wolff, 2007: The TRMM Multisatellite Precipitation Analysis: Quasi-global, multiyear, combined-sensor precipitation estimates at fine scale. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Hung, M.-P., , J.-L. Lin, , W. Wang, , D. Kim, , T. Shinoda, , and S. J. Weaver, 2013: MJO and convectively coupled equatorial waves simulated by CMIP5 climate models. J. Climate, 26, 61856214, doi:10.1175/JCLI-D-12-00541.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., and et al. , 2011: Vertical diabatic heating structure of the MJO: Intercomparison between recent reanalyses and TRMM. Mon. Wea. Rev., 139, 32083223, doi:10.1175/2011MWR3636.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., 1980: Diagnosis of convective and mesoscale motions during Phase III of GATE. J. Atmos. Sci., 37, 733753, doi:10.1175/1520-0469(1980)037<0733:DOCAMM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., , and X. Lin, 1997: Episodic trade wind regimes over the western Pacific warm pool. J. Atmos. Sci.,54, 2020–2034, doi:10.1175/1520-0469(1997054<2020:ETWROT>2.0.CO);2.

  • Johnson, R. H., , and P. E. Ciesielski, 2000: Rainfall and radiative heating rate estimates from TOGA COARE atmospheric budgets. J. Atmos. Sci., 57, 14971514, doi:10.1175/1520-0469(2000)057<1497:RARHRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., , and P. E. Ciesielski, 2002: Characteristics of the 1998 summer monsoon onset over the northern South China Sea. J. Meteor. Soc. Japan, 80, 561578, doi:10.2151/jmsj.80.561.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., , and P. E. Ciesielski, 2013: Structure and properties of Madden–Julian oscillations deduced from DYNAMO sounding arrays. J. Atmos. Sci., 70, 31573179, doi:10.1175/JAS-D-13-065.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., , T. M. Rickenbach, , S. A. Rutledge, , P. E. Ciesielski, , and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 23972418, doi:10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., , J. E. Janowiak, , P. A. Arkin, , and P. Xie, 2004: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, doi:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Katsumata, M., , P. E. Ciesielski, , and R. H. Johnson, 2011: Evaluation of budget analysis during MISMO. J. Appl. Meteor. Climatol., 50, 241254, doi:10.1175/2010JAMC2515.1.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., , and Y. N. Takayabu, 2004: The development of organized convection associated with the MJO during TOGA COARE IOP: Trimodal characteristics. Geophys. Res. Lett., 31, L10101, doi:10.1029/2004GL019601.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., , K. H. Straub, , G. C. Reid, , and K. S. Gage, 2001: Aspects of interannual and intraseasonal variability of the tropopause and lower stratosphere. Quart. J. Roy. Meteor. Soc., 127, 19611983, doi:10.1002/qj.49712757606.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., , K. H. Straub, , and P. T. Haertel, 2005: Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci., 62, 27902809, doi:10.1175/JAS3520.1.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., , M. C. Wheeler, , P. T. Haertel, , K. H. Straub, , and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, 2003, doi:10.1029/2008RG000266.

    • Search Google Scholar
    • Export Citation
  • Kubota, T., and et al. , 2007: Global precipitation map using satellite-borne microwave radiometers by the GSMaP Project: Production and validation. IEEE Trans. Geosci. Remote Sens., 45, 22592275, doi:10.1109/TGRS.2007.895337.

    • Search Google Scholar
    • Export Citation
  • Kuo, Y.-H., , T.-K. Lee, , S. Sokolovskiy, , C. Rocken, , W. Schreiner, , D. Hunt, , and R. A. Anthes, 2004: Inversion and error estimation of GPS radio occultation data. J. Meteor. Soc. Japan, 82, 507531, doi:10.2151/jmsj.2004.507.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., , and G. McGarragh, 2010: A 10-year climatology of tropical radiative heating and its vertical structure from TRMM observations. J. Climate, 23, 519541, doi:10.1175/2009JCLI3018.1.

    • Search Google Scholar
    • Export Citation
  • Lee, M.-I., , I.-S. Kang, , J.-K. Kim, , and B. E. Mapes, 2001: Influence of cloud-radiation interaction on simulating tropical intraseasonal oscillation with an atmosphere general circulation model. J. Geophys. Res., 106, 14 29114 233, doi:10.1029/2001JD900143.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., , and B. E. Mapes, 2004: Radiation budget of the tropical intraseasonal oscillation. J. Atmos. Sci., 61, 20502062, doi:10.1175/1520-0469(2004)061<2050:RBOTTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., , B. E. Mapes, , M. Zhang, , and N. Newman, 2004: Stratiform precipitation, vertical heating profiles, and the Madden–Julian oscillation. J. Atmos. Sci., 61, 296309, doi:10.1175/1520-0469(2004)061<0296:SPVHPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, X., , and R. H. Johnson, 1996: Heating, moistening, and rainfall over the western Pacific warm pool during TOGA COARE. J. Atmos. Sci., 53, 33673383, doi:10.1175/1520-0469(1996)053<3367:HMAROT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, C., , E. J. Zipser, , and S. W. Nesbitt, 2007: Global distribution of tropical deep convection: Different perspectives from TRMM infrared and radar data. J. Climate, 20, 489503, doi:10.1175/JCLI4023.1.

    • Search Google Scholar
    • Export Citation
  • Luo, H., , and M. Yanai, 1984: The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part II: Heat and moisture budgets. Mon. Wea. Rev., 112, 966989, doi:10.1175/1520-0493(1984)112<0966:TLSCAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, doi:10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., , P. E. Ciesieslki, , and R. H. Johnson, 2003: Sampling errors in rawinsonde-array budgets. J. Atmos. Sci., 60, 26972714, doi:10.1175/1520-0469(2003)060<2697:SEIRB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., , S. Tulich, , J. Lin, , and P. Zuidema, 2006: The mesocale convection life cycle: Building block or prototype for large-scale tropical waves? Dyn. Atmos. Oceans, 42, 329, doi:10.1016/j.dynatmoce.2006.03.003.

    • Search Google Scholar
    • Export Citation
  • McNab, A. L., , and A. K. Betts, 1978: Mesoscale budget study of cumulus convection. Mon. Wea. Rev., 106, 13171331, doi:10.1175/1520-0493(1978)106<1317:AMBSOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., , and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 312, doi:10.1175/1520-0493(1987)115<0003:MTCBOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ooyama, K., 1990: A thermodynamic foundation for modeling the moist atmosphere. J. Atmos. Sci., 47, 25802593, doi:10.1175/1520-0469(1990)047<2580:ATFFMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Powell, S. W., , and R. A. Houze Jr., 2013: The cloud population and the onset of the Madden-Julian Oscillation over the Indian Ocean during DYNAMO-AMIE. J. Geophys. Res. Atmos., 118, 11 97911 995, doi:10.1002/2013JD020421.

    • Search Google Scholar
    • Export Citation
  • Praveen Kumar, B., , J. Vialard, , M. Lengaigne, , V. S. N. Murty, , and M. J. McPhaden, 2012: TropFlux: Air-sea fluxes for the global tropical oceans—Description and evaluation. Climate Dyn., 38, 15211543, doi:10.1007/s00382-011-1115-0.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., , Harshvardhan, , D. A. Dazlich, , and T. G. Corsetti, 1989: Interactions among radiation, convection, and large-scale dynamics in a general circulation model. J. Atmos. Sci., 46, 19431970, doi:10.1175/1520-0469(1989)046<1943:IARCAL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 2000: The Hadley circulation as a radiative-convective instability. J. Atmos. Sci., 57, 12861297, doi:10.1175/1520-0469(2000)057<1286:THCAAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 2001: A new model of the Madden–Julian oscillation. J. Atmos. Sci., 58, 28072819, doi:10.1175/1520-0469(2001)058<2807:ANMOTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., , S. L. Sessions, , A. H. Sobel, , and Ž. Fuchs, 2009: The mechanics of gross moist stability. J. Adv. Model. Earth Syst., 1, 9, doi:10.3894/JAMES.2009.1.9.

    • Search Google Scholar
    • Export Citation
  • Ruppert, J. H., , and R. H. Johnson, 2015: Diurnally modulated cumulus moistening in the preonset stage of the Madden–Julian oscillation during DYNAMO. J. Atmos. Sci., doi:10.1175/JAS-D-14-0218.1, in press.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., , and R. A. Houze Jr., 2003: Stratiform rain in the tropics as seen by the TRMM Precipitation Radar. J. Climate, 16, 17391756, doi:10.1175/1520-0442(2003)016<1739:SRITTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., , V. Ramanathan, , T. P. Barnett, , M. K. Tyree, , and E. Roeckner, 1994: Response of an atmospheric general circulation model to radiative forcing of tropical clouds. J. Geophys. Res., 99, 20 82920 845, doi:10.1029/94JD01632.

    • Search Google Scholar
    • Export Citation
  • Slingo, A., , and J. M. Slingo, 1988: The response of a general circulation model to cloud longwave radiative forcing. I: Introduction and initial experiments. Quart. J. Roy. Meteor. Soc., 114, 10271062, doi:10.1002/qj.49711448209.

    • Search Google Scholar
    • Export Citation
  • Slingo, A., , and J. M. Slingo, 1991: The response of a general circulation model to cloud longwave radiative forcing. II: Further studies. Quart. J. Roy. Meteor. Soc., 117, 333364, doi:10.1002/qj.49711749805.

    • Search Google Scholar
    • Export Citation
  • Sobel, A., , and E. D. Maloney, 2012: An idealized semi-empirical framework for the Madden–Julian oscillation. J. Atmos. Sci., 69, 16911705, doi:10.1175/JAS-D-11-0118.1.

    • Search Google Scholar
    • Export Citation
  • Sobel, A., , and E. D. Maloney, 2013: Moisture modes and the eastward propagation of the MJO. J. Atmos. Sci., 70, 187192, doi:10.1175/JAS-D-12-0189.1.

    • Search Google Scholar
    • Export Citation
  • Sobel, A., , S. Wang, , and D. Kim, 2014: Moist static energy budget of the MJO during DYNAMO. J. Atmos. Sci., 71, 4276–4291, doi:10.1175/JAS-D-14-0052.1.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., , M. J. Webb, , P. J. Minnett, , P. H. Daum, , L. Kleinman, , I. Wittmeyer, , and D. A. Randall, 1994: Observations of the Earth’s radiation budget in relation to atmospheric hydrology. 4: Atmospheric column radiative cooling over the world’s oceans. J. Geophys. Res., 99, 18 58518 604, doi:10.1029/94JD01151.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., , P. J. Webster, , R. H. Johnson, , R. Engelen, , and T. S. L’Ecuyer, 2004: Observational evidence for the mutual regulation of the tropical hydrological cycle and the tropical sea surface temperatures. J. Climate, 17, 22132224, doi:10.1175/1520-0442(2004)017<2213:OEFTMR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., , C.-L. Shie, , D. Johnson, , S. Braun, , R. H. Johnson, , and P. E. Ciesielski, 2003: Convective systems over the South China Sea: Cloud-resolving model simulations. J. Atmos. Sci., 60, 29292956, doi:10.1175/1520-0469(2003)060<2929:CSOTSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thuburn, J., , and G. C. Craig, 2002: On the temperature structure of the tropical substratosphere. J. Geophys. Res.,107, doi:10.1029/2001JD000448.

  • Trenberth, K. E., 1991: Climate diagnostics from global analyses: Conservation of mass in ECMWF analyses. J. Climate, 4, 707722, doi:10.1175/1520-0442(1991)004<0707:CDFGAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tung, W.-W., , C. Lin, , B. Chen, , M. Yanai, , and A. Arakawa, 1999: Basic modes of cumulus heating and drying observed during TOGA-COARE IOP. Geophys. Res. Lett., 26, 31173120, doi:10.1029/1999GL900607.

    • Search Google Scholar
    • Export Citation
  • Virts, K. S., , and J. M. Wallace, 2010: Annual, interannual, and intraseasonal variability of tropical tropopause transition layer cirrus. J. Atmos. Sci., 67, 31133129, doi:10.1175/2010JAS3412.1.

    • Search Google Scholar
    • Export Citation
  • Virts, K. S., , J. M. Wallace, , Q. Fu, , and T. P. Ackerman, 2010: Tropical tropopause transition layer cirrus as represented by CALIPSO lidar observations. J. Atmos. Sci., 67, 31133129, doi:10.1175/2010JAS3412.1.

    • Search Google Scholar
    • Export Citation
  • Waite, M. L., , and B. Khouider, 2010: The deepening of tropical convection by congestus preconditioning. J. Atmos. Sci., 67, 26012615, doi:10.1175/2010JAS3357.1.

    • Search Google Scholar
    • Export Citation
  • Wang, J., , H. L. Cole, , D. J. Carlson, , E. R. Miller, , K. Beierle, , A. Paukkunen, , and T. K. Laine, 2002: Corrections of the humidity measurement errors from the Vaisala RS80 radiosonde—Application to TOGA COARE data. J. Atmos. Oceanic Technol., 19, 9811002, doi:10.1175/1520-0426(2002)019<0981:COHMEF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., 1994: TOGA COARE: The role of hydrological processes in ocean-atmosphere interaction. Rev. Geophys., 32, 427476, doi:10.1029/94RG01873.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., , and R. Lukas, 1992: TOGA COARE: The Coupled Ocean–Atmosphere Response Experiment. Bull. Amer. Meteor. Soc., 73, 13771416, doi:10.1175/1520-0477(1992)073<1377:TCTCOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weller, R. A., , and S. P. Anderson, 1996: Surface meteorology and air–sea fluxes in the western equatorial Pacific warm pool during the TOGA Coupled Ocean–Atmosphere Response Experiment. J. Climate, 9, 19591990, doi:10.1175/1520-0442(1996)009<1959:SMAASF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., , and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., , B. R. Barkstrom, , E. F. Harrison, , R. B. Lee III, , G. L. Smith, , and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth Observing System experiment. Bull. Amer. Meteor. Soc., 77, 853868, doi:10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, X., , M. W. Moncrieff, , and K. A. Emanuel, 2000: Evaluation of large-scale forcing during TOGA COARE for cloud-resolving models and single-column models. J. Atmos. Sci., 57, 29772985, doi:10.1175/1520-0469(2000)057<2977:EOLSFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xu, W., , and S. A. Rutledge, 2014: Convective characteristics of the Madden–Julian oscillation over the central Indian Ocean observed by shipborne radar during DYNAMO. J. Atmos. Sci., 71, 28592877, doi:10.1175/JAS-D-13-0372.1.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., , and R. H. Johnson, 1993: Impacts of cumulus convection on thermodynamic fields. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 39–62.

  • Yanai, M., , S. Esbensen, , and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, doi:10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yoneyama, K., and et al. , 2008: MISMO field experiment in the equatorial Indian Ocean. Bull. Amer. Meteor. Soc., 89, 18891903, doi:10.1175/2008BAMS2519.1.

    • Search Google Scholar
    • Export Citation
  • Yoneyama, K., , C. Zhang, , and C. N. Long, 2013: Tracking pulses of the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 94, 18711891, doi:10.1175/BAMS-D-12-00157.1.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., , C. Chou, , and J. D. Neelin, 1998: Estimating the gross moist stability of the tropical atmosphere. J. Atmos. Sci., 55, 13541372, doi:10.1175/1520-0469(1998)055<1354:ETGMSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yu, L., , and R. A. Weller, 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88, 527539, doi:10.1175/BAMS-88-4-527.

    • Search Google Scholar
    • Export Citation
  • Yuan, J., , and R. A. Houze Jr., 2013: Deep convective systems observed by A-Train in the tropical Indo-Pacific region affected by the MJO. J. Atmos. Sci., 70, 465486, doi:10.1175/JAS-D-12-057.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden-Julian Oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

  • Zhang, C., 2013: The Madden–Julian oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 18491870, doi:10.1175/BAMS-D-12-00026.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., , J. Gottschalck, , E. D. Maloney, , M. W. Moncrieff, , F. Vitart, , D. E. Waliser, , B. Wang, , and M. C. Wheeler, 2013: Cracking the MJO nut. Geophys. Res. Lett., 40, 12231230, doi:10.1002/grl.50244.

    • Search Google Scholar
    • Export Citation
  • Zuluaga, M. D., , and R. A. Houze Jr., 2013: Evolution of the population of precipitating convective systems over the equatorial Indian Ocean in active phases of the Madden–Julian oscillation. J. Atmos. Sci., 70, 27132725, doi:10.1175/JAS-D-12-0311.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 109 109 20
PDF Downloads 64 64 9

Sounding-Based Thermodynamic Budgets for DYNAMO

View More View Less
  • 1 Colorado State University, Fort Collins, Colorado
  • | 2 Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
© Get Permissions
Restricted access

Abstract

The Dynamics of the Madden–Julian Oscillation (DYNAMO) field campaign, conducted over the Indian Ocean from October 2011 to March 2012, was designed to study the initiation of the Madden–Julian oscillation (MJO). Two prominent MJOs occurred in the experimental domain during the special observing period in October and November. Data from a northern and a southern sounding array (NSA and SSA, respectively) have been used to investigate the apparent heat sources and sinks (Q1 and Q2) and radiative heating rates QR throughout the life cycles of the two MJO events. The MJO signal was far stronger in the NSA than the SSA. Time series of Q1, Q2, and the vertical eddy flux of moist static energy reveal an evolution of cloud systems for both MJOs consistent with prior studies: shallow, nonprecipitating cumulus during the suppressed phase, followed by cumulus congestus, then deep convection during the active phase, and finally stratiform precipitation. However, the duration of these phases was shorter for the November MJO than for the October event. The profiles of Q1 and Q2 for the two arrays indicate a greater stratiform rain fraction for the NSA than the SSA—a finding supported by TRMM measurements. Surface rainfall rates and net tropospheric QR determined as residuals from the budgets show good agreement with satellite-based estimates. The cloud radiative forcing was approximately 20% of the column-integrated convective heating and of the same amplitude as the normalized gross moist stability, leaving open the possibility of radiative–convective instability for the two MJOs.

Corresponding author address: Richard H. Johnson, Department of Atmospheric Science, 1371 Campus Delivery, Colorado State University, Fort Collins, CO 80523. E-mail: johnson@atmos.colostate.edu

This article is included in the DYNAMO/CINDY/AMIE/LASP: Processes, Dynamics, and Prediction of MJO Initiation special collection.

Abstract

The Dynamics of the Madden–Julian Oscillation (DYNAMO) field campaign, conducted over the Indian Ocean from October 2011 to March 2012, was designed to study the initiation of the Madden–Julian oscillation (MJO). Two prominent MJOs occurred in the experimental domain during the special observing period in October and November. Data from a northern and a southern sounding array (NSA and SSA, respectively) have been used to investigate the apparent heat sources and sinks (Q1 and Q2) and radiative heating rates QR throughout the life cycles of the two MJO events. The MJO signal was far stronger in the NSA than the SSA. Time series of Q1, Q2, and the vertical eddy flux of moist static energy reveal an evolution of cloud systems for both MJOs consistent with prior studies: shallow, nonprecipitating cumulus during the suppressed phase, followed by cumulus congestus, then deep convection during the active phase, and finally stratiform precipitation. However, the duration of these phases was shorter for the November MJO than for the October event. The profiles of Q1 and Q2 for the two arrays indicate a greater stratiform rain fraction for the NSA than the SSA—a finding supported by TRMM measurements. Surface rainfall rates and net tropospheric QR determined as residuals from the budgets show good agreement with satellite-based estimates. The cloud radiative forcing was approximately 20% of the column-integrated convective heating and of the same amplitude as the normalized gross moist stability, leaving open the possibility of radiative–convective instability for the two MJOs.

Corresponding author address: Richard H. Johnson, Department of Atmospheric Science, 1371 Campus Delivery, Colorado State University, Fort Collins, CO 80523. E-mail: johnson@atmos.colostate.edu

This article is included in the DYNAMO/CINDY/AMIE/LASP: Processes, Dynamics, and Prediction of MJO Initiation special collection.

Save