• Baldwin, M. P., , and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584, doi:10.1126/science.1063315.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., 1987: A striking example of the atmosphere’s leading traveling pattern. J. Atmos. Sci., 44, 23102323, doi:10.1175/1520-0469(1987)044<2310:ASEOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Di Biagio, V., , S. Calmanti, , A. Dell’Aquila, , and P. M. Ruti, 2014: Northern Hemisphere winter midlatitude atmospheric variability in CMIP5 models. Geophys. Res. Lett., 41, 12771282, doi:10.1002/2013GL058928.

    • Search Google Scholar
    • Export Citation
  • Fraedrich, K., , and H. Böttger, 1978: A wavenumber-frequency analysis of the 500 mb geopotential at 50°N. J. Atmos. Sci., 35, 745750, doi:10.1175/1520-0469(1978)035<0745:AWFAOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C., , D. Hartmann, , and F. Sassi, 2010: Tropospheric precursors of anomalous Northern Hemisphere stratospheric polar vortices. J. Climate, 23, 32823299, doi:10.1175/2010JCLI3010.1.

    • Search Google Scholar
    • Export Citation
  • Haurwitz, B., 1940: The motion of atmospheric disturbances on a spherical earth. J. Mar. Res., 3, 254267.

  • Hayashi, Y., 1971: A generalized method of resolving disturbances into progressive and retrogressive waves by space Fourier and time cross-spectral analyses. J. Meteor. Soc. Japan, 49, 125128.

    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., 1973: A method of analyzing transient waves by space-time cross spectra. J. Appl. Meteor., 12, 404408, doi:10.1175/1520-0450(1973)012<0404:AMOATW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., 1977: On the coherence between progressive and retrogressive waves and a partition of space-time power spectra into standing and traveling parts. J. Appl. Meteor., 16, 368373, doi:10.1175/1520-0450(1977)016<0368:OTCBPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., 1979: A generalized method of resolving transient disturbances into standing and traveling waves by space-time spectral analysis. J. Atmos. Sci., 36, 10171029.

    • Search Google Scholar
    • Export Citation
  • Lucarini, V., , S. Calmanti, , A. Dell’Aquila, , P. M. Ruti, , and A. Speranza, 2007: Intercomparison of the northern hemisphere winter midlatitude atmospheric variability of the IPCC models. Climate Dyn., 28, 829848, doi:10.1007/s00382-006-0213-x.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., 1979: Observations of large-scale traveling Rossby waves. Rev. Geophys. Space Phys., 17, 19351949, doi:10.1029/RG017i008p01935.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. Speth, 1989: The average behavior of large-scale westward traveling disturbances evident in the Northern Hemisphere geopotential heights. J. Atmos. Sci., 46, 32253239, doi:10.1175/1520-0469(1989)046<3225:TABOLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • May, W., 1999: Space-time spectra of the atmospheric intraseasonal variability in the extratropics and their dependency on the El Niño/Southern Oscillation phenomenon: Model versus observation. Climate Dyn., 15, 369387, doi:10.1007/s003820050288.

    • Search Google Scholar
    • Export Citation
  • Nishii, K., , H. Nakamura, , and T. Miyasaka, 2009: Modulations in the planetary wave field induced by upward-propagating Rossby wave packets prior to stratospheric sudden warming events: A case study. Quart. J. Roy. Meteor. Soc., 135, 3952, doi:10.1002/qj.359.

    • Search Google Scholar
    • Export Citation
  • Pratt, R. W., 1976: The interpretation of space-time spectral quantities. J. Atmos. Sci., 33, 10601066, doi:10.1175/1520-0469(1976)033<1060:TIOSTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., 1987: A study of planetary waves in the southern winter troposphere and stratosphere. Part I: Wave structure and vertical propagation. J. Atmos. Sci., 44, 917935, doi:10.1175/1520-0469(1987)044<0917:ASOPWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., , and I. M. Held, 1991: Phase speed spectra of transient eddy fluxes and critical layer absorption. J. Atmos. Sci., 48, 688697, doi:10.1175/1520-0469(1991)048<0688:PSSOTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., , J. Perlwitz, , and N. Harnik, 2010: Downward wave coupling between the stratosphere and troposphere: The importance of meridional wave guiding and comparison with zonal-mean coupling. J. Climate, 23, 63656381, doi:10.1175/2010JCLI3804.1.

    • Search Google Scholar
    • Export Citation
  • Smith, K. L., , and P. J. Kushner, 2012: Linear interference and the initiation of extratropical stratosphere-troposphere interactions. J. Geophys. Res.,117, D13107, doi:10.1029/2012JD017587.

  • Speth, P., , and R. A. Madden, 1983: Space-time spectral analyses of Northern Hemisphere geopotential heights. J. Atmos. Sci., 40, 10861100, doi:10.1175/1520-0469(1983)040<1086:STSAON>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tsay, C.-Y., 1974: A note on the methods of analyzing traveling waves. Tellus, 26, 412415, doi:10.1111/j.2153-3490.1974.tb01619.x.

  • von Storch, H., , and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 494 pp.

  • Wheeler, M., , and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperatures in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, doi:10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., , and H. H. Hendon, 1997: Propagating and standing components of the intraseasonal oscillation in tropical convection. J. Atmos. Sci., 54, 741752, doi:10.1175/1520-0469(1997)054<0741:PASCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 51 51 7
PDF Downloads 49 49 4

Decomposition of Atmospheric Disturbances into Standing and Traveling Components, with Application to Northern Hemisphere Planetary Waves and Stratosphere–Troposphere Coupling

View More View Less
  • 1 Department of Physics, University of Toronto, Toronto, Ontario, Canada
© Get Permissions
Restricted access

Abstract

This study updates a body of literature that aims to separate atmospheric disturbances into standing and traveling zonal wave components. Classical wavenumber–frequency analysis decomposes longitude- and time-dependent signals into contributions from distinct spatial and temporal scales. Here, an additional decomposition of the spectrum into standing and traveling components is described. Previous methods decompose the power spectrum into standing and traveling parts with no explicit allowance for covariance between the two. This study provides a simple method to calculate the variance of each of these components and the covariance between them. It is shown that this covariance is typically a significant portion of the variance of the total signal. The approach also preserves phase information and allows for the reconstruction of the real-space standing and traveling components.

The technique is applied to reanalysis wintertime geopotential height anomalies in the Northern Hemisphere in order to investigate planetary wave interference effects in stratosphere–troposphere coupling. The results show that for planetary waves 1–3, standing waves explain the largest portion of the variance at low frequencies. An exception is for wave 1 in the high-latitude troposphere, where there is a strong westward-traveling wave. Furthermore, the antinodes of the standing waves have preferred longitudes that tend to align with the extremes of the climatological wave, suggesting that standing waves contribute to a linear interference effect that has been shown to be an important part of stratosphere–troposphere interactions.

Corresponding author address: Oliver Watt-Meyer, Department of Physics, University of Toronto, 60 St. George St., Toronto ON M5S 1A7, Canada. E-mail: oliverwm@atmosp.physics.utoronto.ca

Abstract

This study updates a body of literature that aims to separate atmospheric disturbances into standing and traveling zonal wave components. Classical wavenumber–frequency analysis decomposes longitude- and time-dependent signals into contributions from distinct spatial and temporal scales. Here, an additional decomposition of the spectrum into standing and traveling components is described. Previous methods decompose the power spectrum into standing and traveling parts with no explicit allowance for covariance between the two. This study provides a simple method to calculate the variance of each of these components and the covariance between them. It is shown that this covariance is typically a significant portion of the variance of the total signal. The approach also preserves phase information and allows for the reconstruction of the real-space standing and traveling components.

The technique is applied to reanalysis wintertime geopotential height anomalies in the Northern Hemisphere in order to investigate planetary wave interference effects in stratosphere–troposphere coupling. The results show that for planetary waves 1–3, standing waves explain the largest portion of the variance at low frequencies. An exception is for wave 1 in the high-latitude troposphere, where there is a strong westward-traveling wave. Furthermore, the antinodes of the standing waves have preferred longitudes that tend to align with the extremes of the climatological wave, suggesting that standing waves contribute to a linear interference effect that has been shown to be an important part of stratosphere–troposphere interactions.

Corresponding author address: Oliver Watt-Meyer, Department of Physics, University of Toronto, 60 St. George St., Toronto ON M5S 1A7, Canada. E-mail: oliverwm@atmosp.physics.utoronto.ca
Save