• Alexander, M. J., , and T. J. Dunkerton, 1999: A spectral parameterization of mean-flow forcing due to breaking gravity waves. J. Atmos. Sci., 56, 41674182, doi:10.1175/1520-0469(1999)056<4167:ASPOMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., and et al. , 2010: Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models. Quart. J. Roy. Meteor. Soc., 136, 11031124, doi:10.1002/qj.637.

    • Search Google Scholar
    • Export Citation
  • Bender, C. M., , and S. A. Orszag, 1999: Advanced Mathematical Methods for Scientists and Engineers: Asymptotic Methods and Perturbation Theory. Springer, 593 pp.

  • Bühler, O., , and M. E. McIntyre, 2005: Wave capture and wave–vortex duality. J. Fluid Mech., 534, 6795, doi:10.1017/S0022112005004374.

    • Search Google Scholar
    • Export Citation
  • Chen, L.-Y., , N. Goldenfeld, , and Y. Oono, 1994: Renormalization group theory for global asymptotic analysis. Phys. Rev. Lett., 73, 13111315, doi:10.1103/PhysRevLett.73.1311.

    • Search Google Scholar
    • Export Citation
  • Chen, L.-Y., , N. Goldenfeld, , and Y. Oono, 1996: Renormalization group and singular perturbations: Multiple scales, boundary layers, and reductive perturbation theory. Phys. Rev., 54E, 376394, doi:10.1103/PhysRevE.54.376.

    • Search Google Scholar
    • Export Citation
  • Dritschel, D. G., , and Á. Viúdez, 2003: A balanced approach to modelling rotating stably stratified geophysical flows. J. Fluid Mech., 488, 123150, doi:10.1017/S0022112003004920.

    • Search Google Scholar
    • Export Citation
  • Ford, R., , M. E. McIntyre, , and W. A. Norton, 2000: Balance and the slow quasimanifold: Some explicit results. J. Atmos. Sci., 57, 12361254, doi:10.1175/1520-0469(2000)057<1236:BATSQS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 1997: Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 2: Broad and quasi monochromatic spectra, and implementation. J. Atmos. Sol.-Terr. Phys., 59, 387400, doi:10.1016/S1364-6826(96)00080-6.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. International Geophysics Series, Vol. 88, Elsevier Academic Press, 535 pp.

  • Kunihiro, T., 1995: A geometrical formulation of the renormalization group method for global analysis. Prog. Theor. Phys., 94, 503514, doi:10.1143/PTP.94.503.

    • Search Google Scholar
    • Export Citation
  • Kunihiro, T., 1997: The renormalization-group method applied to asymptotic analysis of vector fields. Prog. Theor. Phys., 97, 179200, doi:10.1143/PTP.97.179.

    • Search Google Scholar
    • Export Citation
  • Leith, C. E., 1980: Nonlinear normal mode initialization and quasigeostrophic theory. J. Atmos. Sci., 37, 958968, doi:10.1175/1520-0469(1980)037<0958:NNMIAQ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1980: Attractor sets and quasigeostrophic equilibrium. J. Atmos. Sci., 37, 16851699, doi:10.1175/1520-0469(1980)037<1685:ASAQGE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lott, F., , R. Plougonven, , and J. Vanneste, 2010: Gravity waves generated by sheared potential vorticity anomalies. J. Atmos. Sci., 67, 157170, doi:10.1175/2009JAS3134.1.

    • Search Google Scholar
    • Export Citation
  • Lott, F., , R. Plougonven, , and J. Vanneste, 2012: Gravity waves generated by sheared three-dimensional potential vorticity anomalies. J. Atmos. Sci., 69, 21342151, doi:10.1175/JAS-D-11-0296.1.

    • Search Google Scholar
    • Export Citation
  • McIntyre, M. E., 2009: Spontaneous imbalance and hybrid vortex–gravity structures. J. Atmos. Sci., 66, 13151326, doi:10.1175/2008JAS2538.1.

    • Search Google Scholar
    • Export Citation
  • McIntyre, M. E., , and W. A. Norton, 2000: Potential vorticity inversion on a hemisphere. J. Atmos. Sci., 57, 12141235, doi:10.1175/1520-0469(2000)057<1214:PVIOAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Miyazaki, K., , K. Sato, , S. Watanabe, , Y. Tomikawa, , Y. Kawatani, , and M. Takahashi, 2010: Transport and mixing in the extratropical tropopause region in a high-vertical-resolution GCM. Part II: Relative importance of large-scale and small-scale dynamics. J. Atmos. Sci., 67, 13151336, doi:10.1175/2009JAS3334.1.

    • Search Google Scholar
    • Export Citation
  • Mohebalhojeh, A. R., , and D. G. Dritschel, 2001: Hierarchies of balance conditions for the f-plane shallow-water equations. J. Atmos. Sci., 58, 24112426, doi:10.1175/1520-0469(2001)058<2411:HOBCFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mohebalhojeh, A. R., , and M. E. McIntyre, 2007a: Local mass conservation and velocity splitting in PV-based balanced models. Part I: The hyperbalance equations. J. Atmos. Sci., 64, 17821793, doi:10.1175/JAS3933.1.

    • Search Google Scholar
    • Export Citation
  • Mohebalhojeh, A. R., , and M. E. McIntyre, 2007b: Local mass conservation and velocity splitting in PV-based balanced models. Part II: Numerical results. J. Atmos. Sci., 64, 17941810, doi:10.1175/JAS3934.1.

    • Search Google Scholar
    • Export Citation
  • Muraki, D. J., , C. Snyder, , and R. Rotunno, 1999: The next-order corrections to quasigeostrophic theory. J. Atmos. Sci., 56, 15471560, doi:10.1175/1520-0469(1999)056<1547:TNOCTQ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ólafsdóttir, E. I., , A. B. O. Daalhuis, , and J. Vanneste, 2008: Inertia–gravity-wave radiation by a sheared vortex. J. Fluid Mech., 596, 169189, doi:10.1017/S0022112007009408.

    • Search Google Scholar
    • Export Citation
  • O’Sullivan, D., , and T. J. Dunkerton, 1995: Generation of inertia–gravity waves in a simulated life-cycle of baroclinic instability. J. Atmos. Sci., 52, 36953716, doi:10.1175/1520-0469(1995)052<3695:GOIWIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., , and C. Snyder, 2005: Gravity waves excited by jets: Propagation versus generation. Geophys. Res. Lett., 32, L18802, doi:10.1029/2005GL023730.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., , and C. Snyder, 2007: Inertia–gravity waves spontaneously generated by jets and fronts. Part I: Different baroclinic life cycles. J. Atmos. Sci., 64, 25022520, doi:10.1175/JAS3953.1.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., , and F. Zhang, 2007: On the forcing of inertia–gravity waves by synoptic-scale flows. J. Atmos. Sci., 64, 17371742, doi:10.1175/JAS3901.1.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., , and F. Zhang, 2014: Internal gravity waves from atmospheric jets and fronts. Rev. Geophys., 52, 3376, doi:10.1002/2012RG000419.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., , D. J. Muraki, , and C. Snyder, 2005: A baroclinic instability that couples balanced motions and gravity waves. J. Atmos. Sci., 62, 15451559, doi:10.1175/JAS3426.1.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., , A. Hertzog, , and L. Guez, 2013: Gravity waves over Antarctica and the Southern Ocean: Consistent momentum fluxes in mesoscale simulations and stratospheric balloon observations. Quart. J. Roy. Meteor. Soc., 139, 101118, doi:10.1002/qj.1965.

    • Search Google Scholar
    • Export Citation
  • Saujani, S., , and T. G. Shepherd, 2006: A unified theory of balance in the extratropics. J. Fluid Mech., 569, 447464, doi:10.1017/S0022112006002783.

    • Search Google Scholar
    • Export Citation
  • Snyder, C., , D. J. Muraki, , R. Plougonven, , and F. Zhang, 2007: Inertia–gravity waves generated within a dipole vortex. J. Atmos. Sci., 64, 44174431, doi:10.1175/2007JAS2351.1.

    • Search Google Scholar
    • Export Citation
  • Snyder, C., , R. Plougonven, , and D. J. Muraki, 2009: Mechanisms for spontaneous gravity wave generation within a dipole vortex. J. Atmos. Sci., 66, 34643478, doi:10.1175/2009JAS3147.1.

    • Search Google Scholar
    • Export Citation
  • Sugimoto, N., , K. Ishioka, , and S. Yoden, 2007: Gravity wave radiation from unsteady rotational flow in an f-plane shallow water system. Fluid Dyn. Res., 39, 731754, doi:10.1016/j.fluiddyn.2007.07.001.

    • Search Google Scholar
    • Export Citation
  • Sugimoto, N., , K. Ishioka, , and K. Ishii, 2008: Parameter sweep experiments on spontaneous gravity wave radiation from unsteady rotational flow in an f-plane shallow water system. J. Atmos. Sci., 65, 235249, doi:10.1175/2007JAS2404.1.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. Cambridge University Press, 745 pp.

  • Vanneste, J., 2013: Balance and spontaneous wave generation in geophysical flows. Annu. Rev. Fluid Mech., 45, 147172, doi:10.1146/annurev-fluid-011212-140730.

    • Search Google Scholar
    • Export Citation
  • Vanneste, J., , and I. Yavneh, 2004: Exponentially small inertia–gravity waves and the breakdown of quasigeostrophic balance. J. Atmos. Sci., 61, 211223, doi:10.1175/1520-0469(2004)061<0211:ESIWAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Viúdez, Á., 2007: The origin of the stationary frontal wave packet spontaneously generated in rotating stratified vortex dipoles. J. Fluid Mech., 593, 359383, doi:10.1017/S0022112007008816.

    • Search Google Scholar
    • Export Citation
  • Wang, S., , and F. Zhang, 2010: Source of gravity waves within a vortex-dipole jet revealed by a linear model. J. Atmos. Sci., 67, 14381455, doi:10.1175/2010JAS3327.1.

    • Search Google Scholar
    • Export Citation
  • Wang, S., , F. Zhang, , and C. C. Epifanio, 2010: Forced gravity wave response near the jet exit region in a linear model. Quart. J. Roy. Meteor. Soc., 136, 17731787, doi:10.1002/qj.676.

    • Search Google Scholar
    • Export Citation
  • Warn, T., , O. Bokhove, , T. G. Shepherd, , and G. K. Vallis, 1995: Rossby number expansions, slaving principles, and balance dynamics. Quart. J. Roy. Meteor. Soc., 121, 723739, doi:10.1002/qj.49712152313.

    • Search Google Scholar
    • Export Citation
  • Warner, C. D., , and M. E. McIntyre, 2001: An ultrasimple spectral parameterization for nonorographic gravity waves. J. Atmos. Sci., 58, 18371857, doi:10.1175/1520-0469(2001)058<1837:AUSPFN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wirosoetisno, D., , T. G. Shepherd, , and R. M. Temam, 2002: Free gravity waves and balanced dynamics. J. Atmos. Sci., 59, 33823398, doi:10.1175/1520-0469(2002)059<3382:FGWABD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yasuda, Y., , K. Sato, , and N. Sugimoto, 2015: A theoretical study on the spontaneous radiation of inertia–gravity waves using the renormalization group method. Part II: Verification of the theoretical equations by numerical simulation. J. Atmos. Sci., 72, 9841009, doi:10.1175/JAS-D-13-0371.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., 2004: Generation of mesoscale gravity waves in upper-tropospheric jet–front systems. J. Atmos. Sci., 61, 440457, doi:10.1175/1520-0469(2004)061<0440:GOMGWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 33 33 8
PDF Downloads 28 28 6

A Theoretical Study on the Spontaneous Radiation of Inertia–Gravity Waves Using the Renormalization Group Method. Part I: Derivation of the Renormalization Group Equations

View More View Less
  • 1 Department of Earth and Planetary Science, University of Tokyo, Tokyo, Japan
  • | 2 Department of Physics, Keio University, Kanagawa, Japan
© Get Permissions
Restricted access

Abstract

By using the renormalization group (RG) method, the interaction between balanced flows and Doppler-shifted inertia–gravity waves (GWs) is formulated for the hydrostatic Boussinesq equations on the f plane. The derived time-evolution equations [RG equations (RGEs)] describe the spontaneous GW radiation from the components slaved to the vortical flow through the quasi resonance, together with the GW radiation reaction on the large-scale flow. The quasi resonance occurs when the space–time scales of GWs are partially comparable to those of slaved components. This theory treats a coexistence system with slow time scales composed of GWs significantly Doppler-shifted by the vortical flow and the balanced flow that interact with each other. The theory includes five dependent variables having slow time scales: one slow variable (linear potential vorticity), two Doppler-shifted fast ones (GW components), and two diagnostic fast ones. Each fast component consists of horizontal divergence and ageostrophic vorticity. The spontaneously radiated GWs are regarded as superpositions of the GW components obtained as low-frequency eigenmodes of the fast variables in a given vortical flow. Slowly varying nonlinear terms of the fast variables are included as the diagnostic components, which are the sum of the slaved components and the GW radiation reactions. A comparison of the balanced adjustment equation (BAE) by Plougonven and Zhang with the linearized RGE shows that the RGE is formally reduced to the BAE by ignoring the GW radiation reaction, although the interpretation on the GW radiation mechanism is significantly different; GWs are radiated through the quasi resonance with a balanced flow because of the time-scale matching.

Corresponding author address: Yuki Yasuda, Department of Earth and Planetary Science, University of Tokyo, Tokyo 113-0033, Japan. E-mail: yyuuki@eps.s.u-tokyo.ac.jp

Abstract

By using the renormalization group (RG) method, the interaction between balanced flows and Doppler-shifted inertia–gravity waves (GWs) is formulated for the hydrostatic Boussinesq equations on the f plane. The derived time-evolution equations [RG equations (RGEs)] describe the spontaneous GW radiation from the components slaved to the vortical flow through the quasi resonance, together with the GW radiation reaction on the large-scale flow. The quasi resonance occurs when the space–time scales of GWs are partially comparable to those of slaved components. This theory treats a coexistence system with slow time scales composed of GWs significantly Doppler-shifted by the vortical flow and the balanced flow that interact with each other. The theory includes five dependent variables having slow time scales: one slow variable (linear potential vorticity), two Doppler-shifted fast ones (GW components), and two diagnostic fast ones. Each fast component consists of horizontal divergence and ageostrophic vorticity. The spontaneously radiated GWs are regarded as superpositions of the GW components obtained as low-frequency eigenmodes of the fast variables in a given vortical flow. Slowly varying nonlinear terms of the fast variables are included as the diagnostic components, which are the sum of the slaved components and the GW radiation reactions. A comparison of the balanced adjustment equation (BAE) by Plougonven and Zhang with the linearized RGE shows that the RGE is formally reduced to the BAE by ignoring the GW radiation reaction, although the interpretation on the GW radiation mechanism is significantly different; GWs are radiated through the quasi resonance with a balanced flow because of the time-scale matching.

Corresponding author address: Yuki Yasuda, Department of Earth and Planetary Science, University of Tokyo, Tokyo 113-0033, Japan. E-mail: yyuuki@eps.s.u-tokyo.ac.jp
Save