A Theoretical Study on the Spontaneous Radiation of Inertia–Gravity Waves Using the Renormalization Group Method. Part II: Verification of the Theoretical Equations by Numerical Simulation

Yuki Yasuda Department of Earth and Planetary Science, University of Tokyo, Tokyo, Japan

Search for other papers by Yuki Yasuda in
Current site
Google Scholar
PubMed
Close
,
Kaoru Sato Department of Earth and Planetary Science, University of Tokyo, Tokyo, Japan

Search for other papers by Kaoru Sato in
Current site
Google Scholar
PubMed
Close
, and
Norihiko Sugimoto Department of Physics, Keio University, Kanagawa, Japan

Search for other papers by Norihiko Sugimoto in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The renormalization group equations (RGEs) describing spontaneous inertia–gravity wave (GW) radiation from part of a balanced flow through a quasi resonance that were derived in a companion paper by Yasuda et al. are validated through numerical simulations of the vortex dipole using the Japan Meteorological Agency nonhydrostatic model (JMA-NHM). The RGEs are integrated for two vortical flow fields: the first is the initial condition that does not contain GWs used for the JMA-NHM simulations, and the second is the simulated thirtieth-day field by the JMA-NHM. The theoretically obtained GW distributions in both RGE integrations are consistent with the numerical simulations using the JMA-NHM. This result supports the validity of the RGE theory. GW radiation in the dipole is physically interpreted either as the mountain-wave-like mechanism proposed by McIntyre or as the velocity-variation mechanism proposed by Viúdez. The shear of the large-scale flow likely determines which mechanism is dominant. In addition, the distribution of GW momentum fluxes is examined based on the JMA-NHM simulation data. The GWs propagating upward from the jet have negative momentum fluxes, while those propagating downward have positive ones. The magnitude of momentum fluxes is approximately proportional to the sixth power of the Rossby number between 0.15 and 0.4.

Corresponding author address: Yuki Yasuda, Department of Earth and Planetary Science, University of Tokyo, Tokyo 113-0033, Japan. E-mail: yyuuki@eps.s.u-tokyo.ac.jp

Abstract

The renormalization group equations (RGEs) describing spontaneous inertia–gravity wave (GW) radiation from part of a balanced flow through a quasi resonance that were derived in a companion paper by Yasuda et al. are validated through numerical simulations of the vortex dipole using the Japan Meteorological Agency nonhydrostatic model (JMA-NHM). The RGEs are integrated for two vortical flow fields: the first is the initial condition that does not contain GWs used for the JMA-NHM simulations, and the second is the simulated thirtieth-day field by the JMA-NHM. The theoretically obtained GW distributions in both RGE integrations are consistent with the numerical simulations using the JMA-NHM. This result supports the validity of the RGE theory. GW radiation in the dipole is physically interpreted either as the mountain-wave-like mechanism proposed by McIntyre or as the velocity-variation mechanism proposed by Viúdez. The shear of the large-scale flow likely determines which mechanism is dominant. In addition, the distribution of GW momentum fluxes is examined based on the JMA-NHM simulation data. The GWs propagating upward from the jet have negative momentum fluxes, while those propagating downward have positive ones. The magnitude of momentum fluxes is approximately proportional to the sixth power of the Rossby number between 0.15 and 0.4.

Corresponding author address: Yuki Yasuda, Department of Earth and Planetary Science, University of Tokyo, Tokyo 113-0033, Japan. E-mail: yyuuki@eps.s.u-tokyo.ac.jp
Save
  • Berestov, A. L., 1979: Solitary Rossby waves. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys., 15, 443447.

  • Bühler, O., and M. E. McIntyre, 2005: Wave capture and wave–vortex duality. J. Fluid Mech., 534, 6795, doi:10.1017/S0022112005004374.

    • Search Google Scholar
    • Export Citation
  • Chen, L.-Y., N. Goldenfeld, and Y. Oono, 1994: Renormalization group theory for global asymptotic analysis. Phys. Rev. Lett., 73, 13111315, doi:10.1103/PhysRevLett.73.1311.

    • Search Google Scholar
    • Export Citation
  • Chen, L.-Y., N. Goldenfeld, and Y. Oono, 1996: Renormalization group and singular perturbations: Multiple scales, boundary layers, and reductive perturbation theory. Phys. Rev., 54E, 376394, doi:10.1103/PhysRevE.54.376.

    • Search Google Scholar
    • Export Citation
  • Flierl, G. R., 1987: Isolated eddy models in geophysics. Annu. Rev. Fluid Mech., 19, 493530, doi:10.1146/annurev.fl.19.010187.002425.

    • Search Google Scholar
    • Export Citation
  • Hirota, I., and T. Niki, 1986: Inertia–gravity waves in the troposphere and stratosphere observed by the MU radar. J. Meteor. Soc. Japan, 64, 995999.

    • Search Google Scholar
    • Export Citation
  • McIntyre, M. E., 2009: Spontaneous imbalance and hybrid vortex–gravity structures. J. Atmos. Sci., 66, 13151326, doi:10.1175/2008JAS2538.1.

    • Search Google Scholar
    • Export Citation
  • Miyazaki, K., K. Sato, S. Watanabe, Y. Tomikawa, Y. Kawatani, and M. Takahashi, 2010: Transport and mixing in the extratropical tropopause region in a high-vertical-resolution GCM. Part II: Relative importance of large-scale and small-scale dynamics. J. Atmos. Sci., 67, 13151336, doi:10.1175/2009JAS3334.1.

    • Search Google Scholar
    • Export Citation
  • O’Sullivan, D., and T. J. Dunkerton, 1995: Generation of inertia–gravity waves in a simulated life cycle of baroclinic instability. J. Atmos. Sci., 52, 36953716, doi:10.1175/1520-0469(1995)052<3695:GOIWIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., and C. Snyder, 2005: Gravity waves excited by jets: Propagation versus generation. Geophys. Res. Lett., 32, L18802, doi:10.1029/2005GL023730.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., and C. Snyder, 2007: Inertia–gravity waves spontaneously generated by jets and fronts. Part I: Different baroclinic life cycles. J. Atmos. Sci., 64, 25022520, doi:10.1175/JAS3953.1.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., and F. Zhang, 2007: On the forcing of inertia–gravity waves by synoptic-scale flows. J. Atmos. Sci., 64, 17371742, doi:10.1175/JAS3901.1.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., A. Hertzog, and L. Guez, 2013: Gravity waves over Antarctica and the Southern Ocean: Consistent momentum fluxes in mesoscale simulations and stratospheric balloon observations. Quart. J. Roy. Meteor. Soc., 139, 101118, doi:10.1002/qj.1965.

    • Search Google Scholar
    • Export Citation
  • Saito, K., and Coauthors, 2006: The operational JMA nonhydrostatic mesoscale model. Mon. Wea. Rev., 134, 12661298, doi:10.1175/MWR3120.1.

    • Search Google Scholar
    • Export Citation
  • Sato, K., 1989: An inertial gravity wave associated with a synoptic-scale pressure trough observed by the MU radar. J. Meteor. Soc. Japan, 67, 325334.

    • Search Google Scholar
    • Export Citation
  • Sato, K., 1994: A statistical study of the structure, saturation and sources of inertio-gravity waves in the lower stratosphere observed with the MU radar. J. Atmos. Terr. Phys., 56, 755774, doi:10.1016/0021-9169(94)90131-7.

    • Search Google Scholar
    • Export Citation
  • Sato, K., and M. Yoshiki, 2008: Gravity wave generation around the polar vortex in the stratosphere revealed by 3-hourly radiosonde observations at Syowa Station. J. Atmos. Sci., 65, 37193735, doi:10.1175/2008JAS2539.1.

    • Search Google Scholar
    • Export Citation
  • Snyder, C., W. C. Skamarock, and R. Rotunno, 1993: Frontal dynamics near and following frontal collapse. J. Atmos. Sci., 50, 31943211, doi:10.1175/1520-0469(1993)050<3194:FDNAFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Snyder, C., D. J. Muraki, R. Plougonven, and F. Zhang, 2007: Inertia–gravity waves generated within a dipole vortex. J. Atmos. Sci., 64, 44174431, doi:10.1175/2007JAS2351.1.

    • Search Google Scholar
    • Export Citation
  • Snyder, C., R. Plougonven, and D. J. Muraki, 2009: Mechanisms for spontaneous gravity wave generation within a dipole vortex. J. Atmos. Sci., 66, 34643478, doi:10.1175/2009JAS3147.1.

    • Search Google Scholar
    • Export Citation
  • Tateno, S., and K. Sato, 2008: A study of inertia–gravity waves in the middle stratosphere based on intensive radiosonde observations. J. Meteor. Soc. Japan, 86, 719732, doi:10.2151/jmsj.86.719.

    • Search Google Scholar
    • Export Citation
  • Uccellini, L., and S. E. Koch, 1987: The synoptic setting and possible energy sources for mesoscale wave disturbances. Mon. Wea. Rev., 115, 721729, doi:10.1175/1520-0493(1987)115<0721:TSSAPE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Viúdez, Á., 2007: The origin of the stationary frontal wave packet spontaneously generated in rotating stratified vortex dipoles. J. Fluid Mech., 593, 359383, doi:10.1017/S0022112007008816.

    • Search Google Scholar
    • Export Citation
  • Viúdez, Á., 2008: The stationary frontal wave packet spontaneously generated in mesoscale dipoles. J. Phys. Oceanogr., 38, 243256, doi:10.1175/2006JPO3692.1.

    • Search Google Scholar
    • Export Citation
  • Wang, S., and F. Zhang, 2010: Source of gravity waves within a vortex-dipole jet revealed by a linear model. J. Atmos. Sci., 67, 14381455, doi:10.1175/2010JAS3327.1.

    • Search Google Scholar
    • Export Citation
  • Wang, S., F. Zhang, and C. Snyder, 2009: Generation and propagation of inertia–gravity waves from vortex dipoles and jets. J. Atmos. Sci., 66, 12941314, doi:10.1175/2008JAS2830.1.

    • Search Google Scholar
    • Export Citation
  • Wang, S., F. Zhang, and C. C. Epifanio, 2010: Forced gravity wave response near the jet exit region in a linear model. Quart. J. Roy. Meteor. Soc., 136, 17731787, doi:10.1002/qj.676.

    • Search Google Scholar
    • Export Citation
  • Wei, J., and F. Zhang, 2014: Mesoscale gravity waves in moist baroclinic jet–front systems. J. Atmos. Sci., 71, 929952, doi:10.1175/JAS-D-13-0171.1.

    • Search Google Scholar
    • Export Citation
  • Yasuda, Y., K. Sato, and N. Sugimoto, 2015: A theoretical study on the spontaneous radiation of inertia–gravity waves using the renormalization group method. Part I: Derivation of the renormalization group equations. J. Atmos. Sci., 72, 957983, doi:10.1175/JAS-D-13-0370.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., 2004: Generation of mesoscale gravity waves in upper-tropospheric jet–front systems. J. Atmos. Sci., 61, 440457, doi:10.1175/1520-0469(2004)061<0440:GOMGWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 609 346 63
PDF Downloads 268 94 4