Decadal Relationship between European Blocking and the North Atlantic Oscillation during 1978–2011. Part II: A Theoretical Model Study

Dehai Luo RCE-TEA, Institute of Atmospheric Physics, Chinese Academy of Science, Beijing, and Qingdao Collaborative Innovation Center of Marine Science and Technology, Qingdao, China

Search for other papers by Dehai Luo in
Current site
Google Scholar
PubMed
Close
,
Yao Yao RCE-TEA, Institute of Atmospheric Physics, Chinese Academy of Science, Beijing, and Physical Oceanography Laboratory, College of Physical and Environmental Oceanography, Ocean University of China, Qingdao, China

Search for other papers by Yao Yao in
Current site
Google Scholar
PubMed
Close
, and
Aiguo Dai Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York, and National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Aiguo Dai in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

In Part I of this study, it is revealed that decadal variations of European blocking, in its intensity, duration, and position, during 1978–2011 are modulated by decadal changes in the frequency of North Atlantic Oscillation (NAO) events associated with background Atlantic conditions. In Part II, reanalysis data are analyzed to first show that a T-bone-type structure of the climatological-mean blocking frequency in the Euro-Atlantic sector roughly results from a combination of the blocking frequency distributions along the southeast–northwest (SE–NW) direction associated with negative-phase NAO (NAO) events and along the southwest–northeast (SW–NE) direction associated with positive-phase NAO (NAO+) events.

A nonlinear multiscale interaction (NMI) model is then used to examine the physical processes behind the blocking frequency distributions. This model shows that the combination of eastward- and westward-displaced blocking frequency patterns along the SW–NE and SE–NW directions associated with NAO+ and NAO events leads to a T-bone-type frequency distribution, as seen in reanalysis data. Moreover, it is found that the westward migration of intense, long-lived blocking anomalies over Europe following NAO+ events is favored (suppressed) when the Atlantic mean zonal wind is relatively weak (strong). This result is held for the strong (weak) western Atlantic storm track. This helps explain the findings in Part I. In particular, long-lived blocking events with double peaks can form over Europe because of reintensification during the NAO+ decay phase, when the mean zonal wind weakens. But the double-peak structure disappears and becomes a strong single-peak structure as the mean zonal wind strengthens.

Corresponding author address: Dr. Dehai Luo, RCE-TEA, Institute of Atmospheric Physics, Chinese Academy of Science, Beijing 100029, China. E-mail: ldh@mail.iap.ac.cn

Abstract

In Part I of this study, it is revealed that decadal variations of European blocking, in its intensity, duration, and position, during 1978–2011 are modulated by decadal changes in the frequency of North Atlantic Oscillation (NAO) events associated with background Atlantic conditions. In Part II, reanalysis data are analyzed to first show that a T-bone-type structure of the climatological-mean blocking frequency in the Euro-Atlantic sector roughly results from a combination of the blocking frequency distributions along the southeast–northwest (SE–NW) direction associated with negative-phase NAO (NAO) events and along the southwest–northeast (SW–NE) direction associated with positive-phase NAO (NAO+) events.

A nonlinear multiscale interaction (NMI) model is then used to examine the physical processes behind the blocking frequency distributions. This model shows that the combination of eastward- and westward-displaced blocking frequency patterns along the SW–NE and SE–NW directions associated with NAO+ and NAO events leads to a T-bone-type frequency distribution, as seen in reanalysis data. Moreover, it is found that the westward migration of intense, long-lived blocking anomalies over Europe following NAO+ events is favored (suppressed) when the Atlantic mean zonal wind is relatively weak (strong). This result is held for the strong (weak) western Atlantic storm track. This helps explain the findings in Part I. In particular, long-lived blocking events with double peaks can form over Europe because of reintensification during the NAO+ decay phase, when the mean zonal wind weakens. But the double-peak structure disappears and becomes a strong single-peak structure as the mean zonal wind strengthens.

Corresponding author address: Dr. Dehai Luo, RCE-TEA, Institute of Atmospheric Physics, Chinese Academy of Science, Beijing 100029, China. E-mail: ldh@mail.iap.ac.cn
Save
  • Arai, M., and H. Mukougawa, 2002: On the effectiveness of the eddy straining mechanism for the maintenance of blocking flows. J. Meteor. Soc. Japan, 80, 10891102, doi:10.2151/jmsj.80.1089.

    • Search Google Scholar
    • Export Citation
  • Benedict, J., S. Lee, and S. B. Feldstein, 2004: Synoptic view of the North Atlantic Oscillation. J. Atmos. Sci., 61, 121144, doi:10.1175/1520-0469(2004)061<0121:SVOTNA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Berggren, R., B. Bolin, and C.-G. Rossby, 1949: An aerological study of zonal motion, its perturbations and break-down. Tellus, 1A, 1437, doi:10.1111/j.2153-3490.1949.tb01257.x.

    • Search Google Scholar
    • Export Citation
  • Brayshaw, D. J., B. Hoskins, and M. Blackburn, 2008: The storm-track response to idealized SST perturbations in an aquaplanet GCM. J. Atmos. Sci., 65, 28422860, doi:10.1175/2008JAS2657.1.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 1993: Downstream development of baroclinic waves as inferred from regression analysis. J. Atmos. Sci., 50, 20382053, doi:10.1175/1520-0469(1993)050<2038:DDOBWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and J. G. DeVore, 1979: Multiple flow equilibria in the atmosphere and blocking. J. Atmos. Sci., 36, 12051216, doi:10.1175/1520-0469(1979)036<1205:MFEITA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Croci-Maspoli, M., C. Schwierz, and H. C. Davies, 2007: Atmospheric blocking: Space-time links to the NAO and PNA. Climate Dyn., 29, 713725, doi:10.1007/s00382-007-0259-4.

    • Search Google Scholar
    • Export Citation
  • Davini, P., C. Cagnazzo, S. Gualdi, and A. Navarra, 2012a: Bidimensional diagnostics, variability, and trends of Northern Hemisphere blocking. J. Climate, 25, 64966509, doi:10.1175/JCLI-D-12-00032.1.

    • Search Google Scholar
    • Export Citation
  • Davini, P., C. Cagnazzo, R. Neale, and J. Tribbia, 2012b: Coupling between Greenland blocking and the North Atlantic Oscillation pattern. Geophys. Res. Lett., 39, L14701, doi:10.1029/2012GL052315.

    • Search Google Scholar
    • Export Citation
  • Diao, Y., J. Li, and D. Luo, 2006: A new blocking index and its application: Blocking action in the Northern Hemisphere. J. Climate, 19, 48194839, doi:10.1175/JCLI3886.1.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., 2003: The dynamics of NAO teleconnection pattern growth and decay. Quart. J. Roy. Meteor. Soc., 129, 901924, doi:10.1256/qj.02.76.

    • Search Google Scholar
    • Export Citation
  • Franzke, C., S. Lee, and S. B. Feldstein, 2004: Is the North Atlantic Oscillation a breaking wave? J. Atmos. Sci., 61, 145160, doi:10.1175/1520-0469(2004)061<0145:ITNAOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Haines, K., and J. C. Marshall, 1987: Eddy-forced coherent structures as a prototype of atmospheric blocking. Quart. J. Roy. Meteor. Soc., 113, 681704, doi:10.1002/qj.49711347613.

    • Search Google Scholar
    • Export Citation
  • Hasegawa, A., and Y. Kodama, 1995: Solitons in Optical Communications. Clarendon Press, 316 pp.

  • Held, I. M., M. Ting, and H. Wang, 2002: Northern winter stationary waves: Theory and modeling. J. Climate, 15, 21252144, doi:10.1175/1520-0442(2002)015<2125:NWSWTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1995: Transient eddy forcing of the rotational flow during northern winter. J. Atmos. Sci., 52, 22862301, doi:10.1175/1520-0469(1995)052<2286:TEFOTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., L.-L. Pan, and M. Watanabe, 2006: Dynamics of synoptic eddy and low-frequency flow interaction. Part I: A linear closure. J. Atmos. Sci., 63, 16771694, doi:10.1175/JAS3715.1.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., 1988: Variability of the observed midlatitude storm tracks in relation to low-frequency changes in the circulation pattern. J. Atmos. Sci., 45, 27182743, doi:10.1175/1520-0469(1988)045<2718:VOTOMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, S., 1995: Linear modes and storm tracks in a two-layer primitive equation model. J. Atmos. Sci., 52, 18411862, doi:10.1175/1520-0469(1995)052<1841:LMASTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Luo, D., 2000: Planetary-scale baroclinic envelope Rossby solitons in a two-layer model and their interaction with synoptic-scale eddies. Dyn. Atmos. Oceans, 32, 2774, doi:10.1016/S0377-0265(99)00018-4.

    • Search Google Scholar
    • Export Citation
  • Luo, D., 2005a: A barotropic envelope Rossby soliton model for block–eddy interaction. Part I: Effect of topography. J. Atmos. Sci., 62, 521, doi:10.1175/1186.1.

    • Search Google Scholar
    • Export Citation
  • Luo, D., 2005b: Why is the North Atlantic block more frequent and long-lived during the negative NAO phase? Geophys. Res. Lett., 32, L20804, doi:10.1029/2005GL022927.

    • Search Google Scholar
    • Export Citation
  • Luo, D., 2005c: Interaction between envelope soliton vortex pair blocks and synoptic-scale eddies in an inhomogeneous baroclinicity environment. Quart. J. Roy. Meteor. Soc., 131, 125154, doi:10.1256/qj.03.164.

    • Search Google Scholar
    • Export Citation
  • Luo, D., and Z. Chen, 2006: The role of land–sea topography in blocking formation in a block-eddy interaction model. J. Atmos. Sci., 63, 30563065, doi:10.1175/JAS3774.1.

    • Search Google Scholar
    • Export Citation
  • Luo, D., and T. Gong, 2006: A possible mechanism for the eastward shift of interannual NAO action centers in last three decades. Geophys. Res. Lett., 33, L24815, doi:10.1029/2006GL027860.

    • Search Google Scholar
    • Export Citation
  • Luo, D., and J. Cha, 2012: The North Atlantic Oscillation and the North Atlantic jet variability: Precursors to NAO regimes and transitions. J. Atmos. Sci., 69, 37633787, doi:10.1175/JAS-D-12-098.1.

    • Search Google Scholar
    • Export Citation
  • Luo, D., A. Lupo, and H. Wan, 2007a: Dynamics of eddy-driven low-frequency dipole modes. Part I: A simple model of North Atlantic Oscillations. J. Atmos. Sci., 64, 328, doi:10.1175/JAS3818.1.

    • Search Google Scholar
    • Export Citation
  • Luo, D., T. Gong, and Y. Diao, 2007b: Dynamics of eddy-driven low-frequency dipole modes. Part III: Meridional displacement of westerly jet anomalies during two phases of NAO. J. Atmos. Sci., 64, 32323248, doi:10.1175/JAS3998.1.

    • Search Google Scholar
    • Export Citation
  • Luo, D., T. Gong, and Y. Diao, 2008a: Dynamics of eddy-driven low-frequency dipole modes. Part IV: Planetary and synoptic wave-breaking processes during the NAO life cycle. J. Atmos. Sci., 65, 737765, doi:10.1175/2007JAS2440.1.

    • Search Google Scholar
    • Export Citation
  • Luo, D., T. Gong, and L. Zhong, 2008b: Dynamical relationship between the phase of North Atlantic Oscillations and the meridional excursion of a preexisting jet: An analytical study. J. Atmos. Sci., 65, 18381858, doi:10.1175/2007JAS2560.1.

    • Search Google Scholar
    • Export Citation
  • Luo, D., Y. Diao, and S. B. Feldstein, 2011: The variability of the Atlantic storm track and the North Atlantic Oscillation: A link between intraseasonal and interannual variability. J. Atmos. Sci., 68, 577601, doi:10.1175/2010JAS3579.1.

    • Search Google Scholar
    • Export Citation
  • Luo, D., J. Cha, and S. B. Feldstein, 2012a: Weather regime transitions and interannual variability of the North Atlantic Oscillation. Part I: A likely connection. J. Atmos. Sci., 69, 23292346, doi:10.1175/JAS-D-11-0289.1.

    • Search Google Scholar
    • Export Citation
  • Luo, D., J. Cha, and S. B. Feldstein, 2012b: Weather regime transitions and the interannual variability of the North Atlantic Oscillation. Part II: Dynamical processes. J. Atmos. Sci., 69, 23472363, doi:10.1175/JAS-D-11-0290.1.

    • Search Google Scholar
    • Export Citation
  • Luo, D., J. Cha, L. Zhong, and A. Dai, 2014: A nonlinear multiscale interaction model for atmospheric blocking: The eddy-blocking matching mechanism. Quart. J. Roy. Meteor. Soc.,140, 1785–1808, doi:10.1002/qj.2337.

  • Luo, D., Y. Yao, and A. Dai, 2015: Decadal relationship between European blocking and North Atlantic Oscillation during 1978–2011. Part I: Atlantic conditions. J. Atmos. Sci., 72, 11521173, doi:10.1175/JAS-D-14-0039.1.

    • Search Google Scholar
    • Export Citation
  • Maeda, S., C. Kobayashi, K. Takano, and T. Tsuyuki, 2000: Relationship between singular modes of blocking flow and high-frequency eddies. J. Meteor. Soc. Japan, 78, 631646.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 1980: An application of equivalent modons to atmospheric blocking. Dyn. Atmos. Oceans, 5, 4372, doi:10.1016/0377-0265(80)90010-X.

    • Search Google Scholar
    • Export Citation
  • Scherrer, S., M. Croci-Maspoli, C. Schwierz, and C. Appenzeller, 2006: Two- dimensional indices of atmospheric blocking and their statistical relationship with winter climate patterns in the Euro-Atlantic region. Int. J. Climatol., 26, 233249, doi:10.1002/joc.1250.

    • Search Google Scholar
    • Export Citation
  • Shabbar, A., J. Huang, and K. Higuchi, 2001: The relationship between the wintertime north Atlantic oscillation and blocking episodes in the north Atlantic. Int. J. Climatol., 21, 355369, doi:10.1002/joc.612.

    • Search Google Scholar
    • Export Citation
  • Shutts, G. J., 1983: The propagation of eddies in diffluent jetstreams: Eddy vorticity forcing of blocking flow fields. Quart. J. Roy. Meteor. Soc., 109, 737761, doi:10.1002/qj.49710946204.

    • Search Google Scholar
    • Export Citation
  • Strong, C., and R. E. Davis, 2008: Variability in the position and strength of winter jet stream cores related to Northern Hemisphere teleconnections. J. Climate, 21, 584592, doi:10.1175/2007JCLI1723.1.

    • Search Google Scholar
    • Export Citation
  • Sung, M.-K., G.-H. Lim, J.-S. Kug, and S.-I. An, 2011: A linkage between the North Atlantic Oscillation and its downstream development due to the existence of a blocking ridge. J. Geophys. Res., 116, D11107, doi:10.1029/2010JD015006.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., B. J. Hoskins, and M. E. McIntyre, 1993: Two paradigms of baroclinic-wave life-cycle behavior. Quart. J. Roy. Meteor. Soc., 119, 1755, doi:10.1002/qj.49711950903.

    • Search Google Scholar
    • Export Citation
  • Tibaldi, S., and F. Molteni, 1990: On the operational predictability of blocking. Tellus, 42A, 343365, doi:10.1034/j.1600-0870.1990.t01-2-00003.x.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., E. P. Gerber, P. J. Kushner, and B. A. Cash, 2004: A mechanism and simple dynamical model of the North Atlantic Oscillation and annular modes. J. Atmos. Sci., 61, 264280, doi:10.1175/1520-0469(2004)061<0264:AMASDM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Woollings, T., and M. Blackburn, 2012: The North Atlantic jet stream under climate change and its relation to the NAO and EA patterns. J. Climate, 25, 886902, doi:10.1175/JCLI-D-11-00087.1.

    • Search Google Scholar
    • Export Citation
  • Woollings, T., B. J. Hoskins, M. Blackburn, and P. Berrisford, 2008: A new Rossby wave–breaking interpretation of the North Atlantic Oscillation. J. Atmos. Sci., 65, 609626, doi:10.1175/2007JAS2347.1.

    • Search Google Scholar
    • Export Citation
  • Woollings, T., J. G. Pinto, and J. A. Santos, 2011: Dynamical evolution of North Atlantic ridges and poleward jet stream displacements. J. Atmos. Sci., 68, 954963, doi:10.1175/2011JAS3661.1.

    • Search Google Scholar
    • Export Citation
  • Yamazaki, A., and H. Itoh, 2013: Vortex–vortex interactions for the maintenance of blocking. Part II: Numerical experiments. J. Atmos. Sci., 70, 743766, doi:10.1175/JAS-D-12-0132.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 961 523 288
PDF Downloads 191 65 1