Identifying a Barotropic Growth Mechanism in East Pacific Tropical Cyclogenesis Using Adjoint-Derived Sensitivity Gradients

Brett T. Hoover Space Science and Engineering Center, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Brett T. Hoover in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The eastern Pacific tropical cyclone basin is typified by a low-level westerly jet with the main development region residing on its northern, cyclonic-shear side. The persistent meridional shear of the zonal flow associated with the jet allows for the possibility of barotropic conversion of energy from the mean state into the kinetic energy of vortices—possibly contributing to tropical cyclogenesis, but this is difficult to quantify by perturbing the model based on intuition since there is no guarantee that perturbations will favorably interact with the jet to facilitate cyclogenesis.

Here, sensitivity gradients of vortex intensity through cyclogenesis are calculated for a set of cases spanning from 2004 to 2010 and are interpreted dynamically to determine which cases have sensitivities describing structures that can grow barotropically from the low-level jet. The adjoint model is run with adiabatic physics linearized about a basic state that contains moist convection. Optimal perturbations derived from these sensitivities are inserted into the model to observe the impact. Roughly 34% of observed cases exhibited structures in sensitivity to zonal flow that strongly imply barotropic growth, while about 21% exhibited no such structures. The remainder (roughly 45%) exhibit some reliance on barotropic growth. Cases with sensitivities exhibiting strong barotropic growth structures are typified by low-level westerly jets with larger meridional shear. In these cases, optimal perturbations require less initial energy to increase vortex intensity by a specified amount, the energy is more strongly focused at jet level, and the localized energy growth rate of perturbations is most efficient.

Corresponding author address: Brett T. Hoover, Space Science and Engineering Center, University of Wisconsin–Madison, 1225 W. Dayton St., Madison, WI 53706. E-mail: brett.hoover@ssec.wisc.edu

Abstract

The eastern Pacific tropical cyclone basin is typified by a low-level westerly jet with the main development region residing on its northern, cyclonic-shear side. The persistent meridional shear of the zonal flow associated with the jet allows for the possibility of barotropic conversion of energy from the mean state into the kinetic energy of vortices—possibly contributing to tropical cyclogenesis, but this is difficult to quantify by perturbing the model based on intuition since there is no guarantee that perturbations will favorably interact with the jet to facilitate cyclogenesis.

Here, sensitivity gradients of vortex intensity through cyclogenesis are calculated for a set of cases spanning from 2004 to 2010 and are interpreted dynamically to determine which cases have sensitivities describing structures that can grow barotropically from the low-level jet. The adjoint model is run with adiabatic physics linearized about a basic state that contains moist convection. Optimal perturbations derived from these sensitivities are inserted into the model to observe the impact. Roughly 34% of observed cases exhibited structures in sensitivity to zonal flow that strongly imply barotropic growth, while about 21% exhibited no such structures. The remainder (roughly 45%) exhibit some reliance on barotropic growth. Cases with sensitivities exhibiting strong barotropic growth structures are typified by low-level westerly jets with larger meridional shear. In these cases, optimal perturbations require less initial energy to increase vortex intensity by a specified amount, the energy is more strongly focused at jet level, and the localized energy growth rate of perturbations is most efficient.

Corresponding author address: Brett T. Hoover, Space Science and Engineering Center, University of Wisconsin–Madison, 1225 W. Dayton St., Madison, WI 53706. E-mail: brett.hoover@ssec.wisc.edu
Save
  • Blessing, S., R. J. Greatbatch, K. Fraedrich, and F. Lunkeit, 2008: Interpreting the atmospheric circulation trend during the last half of the twentieth century: Application of an adjoint model. J. Climate, 21, 4629–4646, doi:10.1175/2007JCLI1990.1.

    • Search Google Scholar
    • Export Citation
  • Chen, J. H., M. S. Peng, C. A. Reynolds, and C. C. Wu, 2009: Interpretation of tropical cyclone forecast sensitivity from the singular vector perspective. J. Atmos. Sci., 66, 3383–3400, doi:10.1175/2009JAS3063.1.

    • Search Google Scholar
    • Export Citation
  • Davis, C., C. Snyder, and A. C. Didlake Jr., 2008: A vortex-based perspective of eastern Pacific tropical cyclone formation. Mon. Wea. Rev., 136, 2461–2477, doi:10.1175/2007MWR2317.1.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. M. Gross, 2003: Evolution of tropical cyclone forecast models. Hurricane! Coping with Disaster, R. Simpson, Ed., Amer. Geophys. Union, 103–126.

  • Doyle, J. D., C. A. Reynolds, C. Amerault, and J. Moskaitis, 2012: Adjoint sensitivity and predictability of tropical cyclogenesis. J. Atmos. Sci., 69, 3535–3557, doi:10.1175/JAS-D-12-0110.1.

    • Search Google Scholar
    • Export Citation
  • Errico, R. M., 1997: What is an adjoint model? Bull. Amer. Meteor. Soc., 78, 2577–2591, doi:10.1175/1520-0477(1997)078<2577:WIAAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., and A. M. Moore, 1992: An adjoint method for obtaining the most rapidly growing perturbation to oceanic flows. J. Phys. Oceanogr., 22, 338–349, doi:10.1175/1520-0485(1992)022<0338:AAMFOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ferreira, R. N., and W. H. Schubert, 1997: Barotropic aspects of ITCZ breakdown. J. Atmos. Sci., 54, 261–285, doi:10.1175/1520-0469(1997)054<0261:BAOIB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Guinn, T. A., and W. H. Schubert, 1993: Hurricane spiral bands. J. Atmos. Sci., 50, 3380–3403, doi:10.1175/1520-0469(1993)050<3380:HSB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and E. D. Maloney, 2001: The Madden–Julian oscillation, barotropic dynamics, and North Pacific tropical cyclone formation. Part II: Stochastic barotropic modeling. J. Atmos. Sci., 58, 2559–2570, doi:10.1175/1520-0469(2001)058<2559:TMJOBD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holdaway, D., and R. Errico, 2014: Using Jacobian sensitivities to assess a linearization of the relaxed Arakawa–Schubert convection scheme. Quart. J. Roy. Meteor. Soc., 140, 1319–1332, doi:10.1002/qj.2210.

    • Search Google Scholar
    • Export Citation
  • Hoover, B. T., and M. C. Morgan, 2010: Validation of a tropical cyclone steering response function with a barotropic adjoint model. J. Atmos. Sci., 67, 1806–1816, doi:10.1175/2010JAS3236.1.

    • Search Google Scholar
    • Export Citation
  • Kim, H. M., and B. J. Jung, 2009: Singular vector structure and evolution of a recurving tropical cyclone. Mon. Wea. Rev., 137, 505–524, doi:10.1175/2008MWR2643.1.

    • Search Google Scholar
    • Export Citation
  • Kim, H. M., S.-M. Kim, and B.-J. Jung, 2011: Real-time adaptive observation guidance using singular vectors for Typhoon Jangmi (2009) in T-PARC 2008. Wea. Forecasting, 26, 634–649, doi:10.1175/WAF-D-10-05013.1.

    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., and M. C. Morgan, 2005: Interpretation of the structure and evolution of adjoint-derived forecast sensitivity gradients. Mon. Wea. Rev., 133, 466–484, doi:10.1175/MWR-2865.1.

    • Search Google Scholar
    • Export Citation
  • Komaromi, W. A., S. J. Majumdar, and E. D. Rappin, 2011: Diagnosing initial condition sensitivity of Typhoon Sinlaku (2008) and Hurricane Ike (2008). Mon. Wea. Rev., 139, 3224–3242, doi:10.1175/MWR-D-10-05018.1.

    • Search Google Scholar
    • Export Citation
  • Lang, S. T. K., S. C. Jones, M. Leutbecher, M. S. Peng, and C. A. Reynolds, 2012: Sensitivity, structure, and dynamics of singular vectors associated with Hurricane Helene (2006). J. Atmos. Sci., 69, 675–694, doi:10.1175/JAS-D-11-048.1.

    • Search Google Scholar
    • Export Citation
  • Langland, R. H., R. L. Elsberry, and R. M. Errico, 1995: Evaluation of physical processes in an idealized extratropical cyclone using adjoint sensitivity. Quart. J. Roy. Meteor. Soc., 121, 1349–1386, doi:10.1002/qj.49712152608.

    • Search Google Scholar
    • Export Citation
  • Lipps, F. B., 1970: Barotropic stability and tropical disturbances. Mon. Wea. Rev., 98, 122–131, doi:10.1175/1520-0493(1970)098<0122:BSATD>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mak, M., and M. Cai, 1989: Local barotropic instability. J. Atmos. Sci., 46, 3289–3311, doi:10.1175/1520-0469(1989)046<3289:LBI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 2001: The Madden–Julian oscillation, barotropic dynamics, and North Pacific tropical cyclone formation. Part I: Observations. J. Atmos. Sci., 58, 2545–2558, doi:10.1175/1520-0469(2001)058<2545:TMJOBD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., R. Gelaro, J. Barkmeijer, and R. Buizza, 1998: Singular vectors, metrics, and adaptive observations. J. Atmos. Sci., 55, 633–653, doi:10.1175/1520-0469(1998)055<0633:SVMAAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Peng, M. S., and C. A. Reynolds, 2006: Sensitivity of tropical cyclone forecasts as revealed by singular vectors. J. Atmos. Sci., 63, 2508–2528, doi:10.1175/JAS3777.1.

    • Search Google Scholar
    • Export Citation
  • Poveda, G., and O. J. Mesa, 2000: On the existence of the Lloro (the rainiest locality on Earth): Enhanced ocean-land-atmosphere interaction by a low-level jet. Geophys. Res. Lett., 27, 1675–1678, doi:10.1029/1999GL006091.

    • Search Google Scholar
    • Export Citation
  • Reynolds, C. A., M. S. Peng, and J. H. Chen, 2009: Recurving tropical cyclones: Singular vector sensitivity and downstream impacts. Mon. Wea. Rev., 137, 1320–1337, doi:10.1175/2008MWR2652.1.

    • Search Google Scholar
    • Export Citation
  • Snyder, C., and A. Joly, 1998: Development of perturbations within growing baroclinic waves. Quart. J. Roy. Meteor. Soc., 124, 1961–1983, doi:10.1002/qj.49712455009.

    • Search Google Scholar
    • Export Citation
  • Vukićević, T., and K. Raeder, 1995: Use of an adjoint model for finding triggers for Alpine lee cyclogenesis. Mon. Wea. Rev., 123, 800–816, doi:10.1175/1520-0493(1995)123<0800:UOAAMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, C. C., J. H. Chen, P. H. Lin, and K. H. Chou, 2007: Targeted observations of tropical cyclone movement based on the adjoint-derived sensitivity steering vector. J. Atmos. Sci., 64, 2611–2626, doi:10.1175/JAS3974.1.

    • Search Google Scholar
    • Export Citation
  • Wu, C. C., S. G. Chen, J. H. Chen, K. H. Chou, and P. H. Lin, 2009: Interaction of Typhoon Shanshan (2006) with the midlatitude trough from both adjoint-derived sensitivity steering vector and potential vorticity perspectives. Mon. Wea. Rev., 137, 852–862, doi:10.1175/2008MWR2585.1.

    • Search Google Scholar
    • Export Citation
  • Zou, X., F. Vandenberghe, M. Pondeca, and Y. H. Kuo, 1997:Introduction to adjoint techniques and the MM5 adjoint modeling system. NCAR Tech. Note TN-435-STR, 107 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 381 211 34
PDF Downloads 161 42 5