• Ambaum, M. H. P., , and L. Novak, 2014: A nonlinear oscillator describing storm track variability. Quart. J. Roy. Meteor. Soc., 140, 26802684, doi:10.1002/qj.2352.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , M. Widmann, , V. P. Dymnikov, , J. M. Wallace, , and I. Blade, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 19902009, doi:10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 2004: Are the Northern Hemisphere winter storm tracks significantly correlated? J. Climate, 17, 42304244, doi:10.1175/JCLI3195.1.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., , and D. B. Yu, 1999: Characteristics of wave packets in the upper troposphere. Part I: Northern Hemisphere winter. J. Atmos. Sci., 56, 17081728, doi:10.1175/1520-0469(1999)056<1708:COWPIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., , and Y. Fu, 2002: Interdecadal variations in Northern Hemisphere winter storm track intensity. J. Climate, 15, 642658, doi:10.1175/1520-0442(2002)015<0642:IVINHW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • DeWeaver, E., , and S. Nigam, 2000: Do stationary waves drive the zonal-mean jet anomalies of the northern winter? J. Climate, 13, 21602176, doi:10.1175/1520-0442(2000)013<2160:DSWDTZ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., 2003: The dynamics of NAO teleconnection pattern growth and decay. Quart. J. Roy. Meteor. Soc., 129, 901924, doi:10.1256/qj.02.76.

    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., , and G. K. Vallis, 2005: A stochastic model for the spatial structure of annular patterns of variability and the North Atlantic Oscillation. J. Climate, 18, 21022118, doi:10.1175/JCLI3337.1.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., , and F. Lo, 1998: Wave-driven zonal flow vacillation in the Southern Hemisphere. J. Atmos. Sci., 55, 13031315, doi:10.1175/1520-0469(1998)055<1303:WDZFVI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269, 676679, doi:10.1126/science.269.5224.676.

    • Search Google Scholar
    • Export Citation
  • Kidson, J. W., 1988: Interannual variations in the Southern Hemisphere circulation. J. Climate, 1, 11771198, doi:10.1175/1520-0442(1988)001<1177:IVITSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., 1988: Variability of the observed midlatitude storm tracks in relation to low-frequency changes in the circulation pattern. J. Atmos. Sci., 45, 27182743, doi:10.1175/1520-0469(1988)045<2718:VOTOMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, Y., , and N.-C. Lau, 2012: Contributions of downstream eddy development to the teleconnection between ENSO and the atmospheric circulation over the North Atlantic. J. Climate, 25, 49935010, doi:10.1175/JCLI-D-11-00377.1.

    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., , and D. L. Hartmann, 2000: Wave-maintained annular modes of climate variability. J. Climate, 13, 44144429, doi:10.1175/1520-0442(2000)013<4414:WMAMOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., , and D. L. Hartmann, 2001: Eddy–zonal flow feedback in the Southern Hemisphere. J. Atmos. Sci., 58, 33123327, doi:10.1175/1520-0469(2001)058<3312:EZFFIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., , and D. L. Hartmann, 2003: Eddy–zonal flow feedback in the Northern Hemisphere winter. J. Climate, 16, 12121227, doi:10.1175/1520-0442(2003)16<1212:EFFITN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., , T. Izumi, , and T. Sampe, 2002: Interannual and decadal modulations recently observed in the Pacific storm track activity and East Asian winter monsoon. J. Climate, 15, 18551874, doi:10.1175/1520-0442(2002)015<1855:IADMRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • North, G. R., , T. L. Bell, , R. F. Cahalan, , and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, doi:10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Quadrelli, R., , and J. M. Wallace, 2004: A simplified linear framework for interpreting patterns of Northern Hemisphere wintertime climate variability. J. Climate, 17, 37283744, doi:10.1175/1520-0442(2004)017<3728:ASLFFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., , and B. J. Hoskins, 1978: The life cycles of some nonlinear baroclinic waves. J. Atmos. Sci., 35, 414432, doi:10.1175/1520-0469(1978)035<0414:TLCOSN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016, doi:10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , and E. A. Barnes, 2014: Periodic variability in the large-scale Southern Hemisphere atmospheric circulation. Science, 343, 641645, doi:10.1126/science.1247660.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , and J. D. Woodworth, 2014: Barotropic and baroclinic annular variability in the Southern Hemisphere. J. Atmos. Sci., 71, 14801493, doi:10.1175/JAS-D-13-0185.1.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., 2000: North Atlantic Oscillation/annular mode: Two paradigms—One phenomenon. Quart. J. Roy. Meteor. Soc., 126, 791805, doi:10.1002/qj.49712656402.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., , and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, doi:10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wettstein, J. J., , and J. M. Wallace, 2010: Observed patterns of month-to-month storm track variability and their relationship to the background flow. J. Atmos. Sci., 67, 14201437, doi:10.1175/2009JAS3194.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 59 59 10
PDF Downloads 47 47 6

Baroclinic and Barotropic Annular Variability in the Northern Hemisphere

View More View Less
  • 1 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
© Get Permissions
Restricted access

Abstract

Large-scale variability in the Northern Hemisphere (NH) circulation can be viewed in the context of three primary types of structures: 1) teleconnection patterns, 2) a barotropic annular mode, and 3) a baroclinic annular mode. The barotropic annular mode corresponds to the northern annular mode (NAM) and has been examined extensively in previous research. Here the authors examine the spatial structure and time-dependent behavior of the NH baroclinic annular mode (NBAM).

The NAM and NBAM have very different signatures in large-scale NH climate variability. The NAM emerges as the leading principal component (PC) time series of the zonal-mean kinetic energy. It dominates the variance in the wave fluxes of momentum, projects weakly onto the eddy kinetic energy and wave fluxes of heat, and can be modeled as Gaussian red noise with a time scale of ~10 days. In contrast, the NBAM emerges as the leading PC time series of the eddy kinetic energy. It is most clearly identified when the planetary-scale waves are filtered from the data, dominates the variance in the synoptic-scale eddy kinetic energy and wave fluxes of heat, and has a relatively weak signature in the zonal-mean kinetic energy and the wave fluxes of momentum. The NBAM is marked by weak but significant enhanced spectral power on time scales of ~20–25 days.

The NBAM is remarkably similar to its Southern Hemisphere counterpart despite the pronounced interhemispheric differences in orography and land–sea contrasts.

Corresponding author address: David W. J. Thompson, Dept. of Atmospheric Science, Colorado State University, Campus Delivery 1782, Ft. Collins, CO 80523. E-mail: davet@atmos.colostate.edu

Abstract

Large-scale variability in the Northern Hemisphere (NH) circulation can be viewed in the context of three primary types of structures: 1) teleconnection patterns, 2) a barotropic annular mode, and 3) a baroclinic annular mode. The barotropic annular mode corresponds to the northern annular mode (NAM) and has been examined extensively in previous research. Here the authors examine the spatial structure and time-dependent behavior of the NH baroclinic annular mode (NBAM).

The NAM and NBAM have very different signatures in large-scale NH climate variability. The NAM emerges as the leading principal component (PC) time series of the zonal-mean kinetic energy. It dominates the variance in the wave fluxes of momentum, projects weakly onto the eddy kinetic energy and wave fluxes of heat, and can be modeled as Gaussian red noise with a time scale of ~10 days. In contrast, the NBAM emerges as the leading PC time series of the eddy kinetic energy. It is most clearly identified when the planetary-scale waves are filtered from the data, dominates the variance in the synoptic-scale eddy kinetic energy and wave fluxes of heat, and has a relatively weak signature in the zonal-mean kinetic energy and the wave fluxes of momentum. The NBAM is marked by weak but significant enhanced spectral power on time scales of ~20–25 days.

The NBAM is remarkably similar to its Southern Hemisphere counterpart despite the pronounced interhemispheric differences in orography and land–sea contrasts.

Corresponding author address: David W. J. Thompson, Dept. of Atmospheric Science, Colorado State University, Campus Delivery 1782, Ft. Collins, CO 80523. E-mail: davet@atmos.colostate.edu
Save