• Albright, M. D., , D. R. Mock, , E. E. Recker, , and R. J. Reed, 1981: A diagnostic study of the diurnal rainfall variation in the GATE B-scale area. J. Atmos. Sci., 38, 14291445, doi:10.1175/1520-0469(1981)038<1429:ADSOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Albright, M. D., , E. E. Recker, , R. J. Reed, , and R. Dang, 1985: The diurnal variation of deep convection and inferred precipitation in the central tropical Pacific during January–February 1979. Mon. Wea. Rev., 113, 16631680, doi:10.1175/1520-0493(1985)113<1663:TDVODC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., , J.-P. Chaboureau, , A. Beljaars, , A. K. Betts, , M. Kohler, , M. Miller, , and J.-L. Redelsperger, 2004: The simulation of the diurnal cycle of convective precipitation over land in a global model. Quart. J. Roy. Meteor. Soc., 130, 31193137, doi:10.1256/qj.03.103.

    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., , E. D. Maloney, , A. H. Sobel, , D. M. Frierson, , and L. J. Donner, 2013: Tropical intraseasonal variability in version 3 of the GFDL Atmosphere Model. J. Climate, 26, 426449, doi:10.1175/JCLI-D-12-00103.1.

    • Search Google Scholar
    • Export Citation
  • Bowman, K. P., , J. C. Collier, , G. R. North, , Q. Wu, , E. Ha, , and J. Hardin, 2005: Diurnal cycle of tropical precipitation in Tropical Rainfall Measuring Mission (TRMM) satellite and ocean buoy rain gauge data. J. Geophys. Res., 110, D21104, doi:10.1029/2005JD005763.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., , and R. A. Houze Jr., 1997: Diurnal variation and life-cycle of deep convective systems over the tropical Pacific warm pool. Quart. J. Roy. Meteor. Soc., 123, 357388, doi:10.1002/qj.49712353806.

    • Search Google Scholar
    • Export Citation
  • Chikira, M., , and M. Sugiyama, 2010: A cumulus parameterization with state-dependent entrainment rate. Part I: Description and sensitivity to temperature and humidity profiles. J. Atmos. Sci., 67, 21712193, doi:10.1175/2010JAS3316.1.

    • Search Google Scholar
    • Export Citation
  • Collins, W. J., and et al. , 2008: Evaluation of the HadGEM2 model. Met Office Hadley Centre Tech. Note 74, 47 pp. [Available online at http://www.metoffice.gov.uk/media/pdf/8/7/HCTN_74.pdf.]

  • Dai, A., , and K. E. Trenberth, 2004: The diurnal cycle and its depiction in the Community Climate System Model. J. Climate, 17, 930951, doi:10.1175/1520-0442(2004)017<0930:TDCAID>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dai, A., , K. E. Trenberth, , and T. R. Karl, 1999: Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range. J. Climate, 12, 24512473, doi:10.1175/1520-0442(1999)012<2451:EOCSMP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davis, C. P., , D. L. Wu, , C. Emde, , J. H. Jiang, , R. E. Cofield, , and R. S. Harwood, 2005: Cirrus induced polarization in 122 GHz Aura Microwave Limb Sounder radiances. Geophys. Res. Lett.,32, L14806, doi:10.1029/2005GL022681.

  • Delanoë, J., , R. J. Hogan, , R. M. Forbes, , A. Bodas-Salcedo, , and T. H. M. Stein, 2011: Evaluation of ice cloud representation in the ECMWF and UK Met Office models using CloudSat and CALIPSO data. Quart. J. Roy. Meteor. Soc., 137, 20642078, doi:10.1002/qj.882.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., , and J. Wu, 2010: The role of entrainment in the diurnal cycle of continental convection. J. Climate, 23, 27222738, doi:10.1175/2009JCLI3340.1.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., , Y.-H. Chen, , D. Kim, , and M.-S. Yao, 2012: The MJO transition from shallow to deep convection in CloudSat/CALIPSO data and GISS GCM simulations. J. Climate, 25, 37553770, doi:10.1175/JCLI-D-11-00384.1.

    • Search Google Scholar
    • Export Citation
  • Derbyshire, S. H., , A. V. Maidens, , S. F. Milton, , R. A. Stratton, , and M. R. Willett, 2011: Adaptive detrainment in a convective parametrization. Quart. J. Roy. Meteor. Soc., 137, 18561871, doi:10.1002/qj.875.

    • Search Google Scholar
    • Export Citation
  • Dolinar, E. K., , X. Dong, , B. Xi, , J. H. Jiang, , and H. Su, 2015: Evaluation of CMIP5 simulated clouds and TOA radiation budgets using NASA satellite observations. Climate Dyn., doi:10.1007/s00382-014-2158-9, in press.

    • Search Google Scholar
    • Export Citation
  • Donner, L. J., and et al. , 2011: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J. Climate,24, 3484–3519, doi:10.1175/2011JCLI3955.1.

  • Dufresne, J.-L., and et al. , 2013: Climate change projections using the IPSL-CM5 Earth System Model: From CMIP3 to CMIP5. Climate Dyn., 40 (9–10), 21232165, doi:10.1007/s00382-012-1636-1.

    • Search Google Scholar
    • Export Citation
  • Feng, Z., , X. Dong, , B. Xi, , C. Schumacher, , P. Minnis, , and M. Khaiyer, 2011: Top-of-atmosphere radiation budget of convective core/stratiform rain and anvils from deep convective systems. J. Geophys. Res., 116, D23202, doi:10.1029/2011JD016451.

    • Search Google Scholar
    • Export Citation
  • Gary, W. M., , and R. W. Jacobson Jr., 1977: Diurnal variation of deep cumulus convection. Mon. Wea. Rev.,105, 1171–1188, doi:10.1175/1520-0493(1977)105<1171:DVODCC>2.0.CO;2.

  • Gettelman, A., and et al. , 2010: Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the Community Atmosphere Model. J. Geophys. Res., 115, D18216, doi:10.1029/2009JD013797.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., , and P. R. Rowntree, 1990: A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure. Mon. Wea. Rev., 118, 14831506, doi:10.1175/1520-0493(1990)118<1483:AMFCSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gregory, J., 1999: Representation of the radiative effects of convective anvils. Hadley Centre Tech. Note 7, 20 pp. [Available online at http://www.metoffice.gov.uk/archive/hadley-centre-technical-note-7.]

  • Hendon, H. H., , and K. Woodberry, 1993: The diurnal cycle of tropical convection. J. Geophys. Res., 98, 16 62316 638, doi:10.1029/93JD00525.

    • Search Google Scholar
    • Export Citation
  • Hesthaven, J. S., , S. Gottlieb, , and D. Gottlieb, 2007: Spectral Methods for Time-Dependent Problems. Cambridge University Press, 284 pp.

  • Hourdin, F., and et al. , 2013: LMDZ5B: The atmospheric component of the IPSL climate model with revisited parameterizations for clouds and convection. Climate Dyn., 40 (9–10), 2193–2222, doi:10.1007/s00382-012-1343-y.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., , and A. K. Betts, 1981: Convection in GATE. Rev. Geophys., 19, 541576, doi:10.1029/RG019i004p00541.

  • Jiang, J. H., , and D. L. Wu, 2004: Ice and water permittivities for millimeter and sub-millimeter remote sensing applications. Atmos. Sci. Lett.,5, 146–151, doi:10.1002/asl.77.

  • Jiang, J. H., and et al. , 2010: Five-year (2004–2009) observations of upper tropospheric water vapor and cloud ice from MLS and comparisons with GEOS-5 analyses. J. Geophys. Res.,115, D15103, doi:10.1029/2009JD013256.

  • Jiang, J. H., and et al. , 2012: Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA “A-Train” satellite observations. J. Geophys. Res.,117, D14105, doi:10.1029/2011JD017237.

  • Johnson, R. H., , T. M. Rickenbach, , S. A. Rutledge, , P. E. Ciesielski, , and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 23972418, doi:10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., , and B. Wang, 2008: Diurnal precipitation regimes in the global tropics. J. Climate, 21, 26802696, doi:10.1175/2007JCLI2051.1.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., and et al. , 2010: Overview and early results of the Superconducting Submillimeter-Wave Limb Emission Sounder (SMILES). J. Geophys. Res., 115, D23306, doi:10.1029/2010JD014379.

    • Search Google Scholar
    • Export Citation
  • Kim, D., , A. H. Sobel, , A. Del Genio, , Y.-H. Chen, , S. J. Camargo, , M.-S. Yao, , M. Kelley, , and L. Nazarenko, 2012: The tropical subseasonal variability simulated in the NASA GISS general circulation model. J. Climate, 25, 46414659, doi:10.1175/JCLI-D-11-00447.1.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., , Y. Zhang, , M. D. Zelinka, , R. Pincus, , J. Boyle, , and P. J. Gleckler, 2013: Are climate model simulations of clouds improving? An evaluation using the ISCCP simulator. J. Geophys. Res. Atmos., 118, 13291342, doi:10.1002/jgrd.50141.

    • Search Google Scholar
    • Export Citation
  • Kraus, E. B., 1963: The diurnal precipitation change over the sea. J. Atmos. Sci., 20, 551556, doi:10.1175/1520-0469(1963)020<0551:TDPCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kuang, Z., , and C. S. Bretherton, 2006: A mass flux scheme view of a high-resolution simulation of transition from shallow to deep cumulus convection. J. Atmos. Sci., 63, 18951909, doi:10.1175/JAS3723.1.

    • Search Google Scholar
    • Export Citation
  • Lee, M.-I., and et al. , 2007: An analysis of the warm season diurnal cycle over the continental United States and northern Mexico in general circulation models. J. Hydrometeor., 8, 344366, doi:10.1175/JHM581.1.

    • Search Google Scholar
    • Export Citation
  • Li, J.-L., and et al. , 2005: Comparisons of EOS MLS cloud ice measurements with ECMWF analyses and GCM simulations: Initial results. Geophys. Res. Lett., 32, L18710, doi:10.1029/2005GL023788.

    • Search Google Scholar
    • Export Citation
  • Li, J.-L., and et al. , 2012: An observationally based evaluation of cloud ice water in CMIP3 and CMIP5 GCMs and contemporary reanalyses using contemporary satellite data. J. Geophys. Res., 117, D16105, doi:10.1029/2012JD017640.

    • Search Google Scholar
    • Export Citation
  • Liu, C., , and M. W. Moncrieff, 1998: A numerical study of the diurnal cycle of tropical oceanic convection. J. Atmos. Sci.,55, 2329–2344, doi:10.1175/1520-0469(1998)055<2329:ANSOTD>2.0.CO;2.

  • Liu, X., , and J. E. Penner, 2005: Ice nucleation parameterization for global models. Meteor. Z., 14, 499514, doi:10.1127/0941-2948/2005/0059.

    • Search Google Scholar
    • Export Citation
  • Livesey, N. J., and et al. , 2013: Earth Observing System (EOS) Aura Microwave Limb Sounder (MLS) version 2.2 and 2.3 level 2 data quality and description document. Jet Propulsion Laboratory Tech. Rep. JPL D-33509, 118 pp. [Available online at http://mls.jpl.nasa.gov/data/v2_data_quality_document.pdf.]

  • Lorenz E. N., 1956: Empirical orthogonal functions and statistical weather prediction. Statistical Forecasting Project Sci. Rep. 1, 48 pp. [Available online at http://www.o3d.org/abracco/Atlantic/Lorenz1956.pdf.]

  • Manabe, T., , T. Fukami, , T. Nishibori, , K. Mizukoshi, , and S. Ochiai, 2008: Measurement and evaluation of submillimeter-wave antenna quasioptical feed system by a phase-retrieval method in the 640-GHz band. IEICE Trans. Commun., E91.B,17601766, doi:10.1093/ietcom/e91-b.6.1760.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 2000: Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. J. Atmos. Sci., 57, 15151535, doi:10.1175/1520-0469(2000)057<1515:CISSTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • May, P. T., , C. N. Long, , and A. Protat, 2012: The diurnal cycle of the boundary layer, convection, clouds, and surface radiation in a coastal monsoon environment (Darwin, Australia). J. Climate, 25, 53095326, doi:10.1175/JCLI-D-11-00538.1.

    • Search Google Scholar
    • Export Citation
  • McGarry, M. M., , and R. J. Reed, 1978: Diurnal variations in convective activity and precipitation during phases II and III of GATE. Mon. Wea. Rev., 106, 101, doi:10.1175/1520-0493(1978)106<0101:DVICAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Millan, L., and et al. , 2013: SMILES ice cloud products. J. Geophys. Res. Atmos., 118, 64686477, doi:10.1002/jgrd.50322.

  • Morcrette, C. J., , E. J. O’Connor, , and J. C. Petch, 2011: Evaluation of two cloud parametrization schemes using ARM and Cloud-Net observations. Quart. J. Roy. Meteor. Soc., 138, 964–979, doi:10.1002/qj.969.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., , and E. J. Zipser, 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16, 14561475, doi:10.1175/1520-0442-16.10.1456.

    • Search Google Scholar
    • Export Citation
  • Nitis, T., , D. Kitsiou, , Z. B. Klaiìc, , M. T. Prtenjak, , and N. Moussiopoulos, 2005: The effects of basic flow and topography on the development of the sea breeze over a complex coastal environment. Quart. J. Roy. Meteor. Soc., 131, 305328, doi:10.1256/qj.04.42.

    • Search Google Scholar
    • Export Citation
  • Park, S., , and C. S. Bretherton, 2009: The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the community atmosphere model. J. Climate, 22, 34493469, doi:10.1175/2008JCLI2557.1.

    • Search Google Scholar
    • Export Citation
  • Pritchard, M. S., , and R. C. J. Somerville, 2009: Assessing the diurnal cycle of precipitation in a multi-scale climate model. J. Adv. Model. Earth Syst.,1, 12, doi:10.3894/JAMES.2009.1.12.

  • Randall, D. A., , Harshvardhan, , and D. A. Dazlich, 1991: Diurnal variability of the hydrologic cycle in a general circulation model. J. Atmos. Sci., 48, 4062, doi:10.1175/1520-0469(1991)048<0040:DVOTHC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ray, C. L., 1928: Diurnal variation of rainfall at San Juan, P.R. Mon. Wea. Rev., 56, 140141, doi:10.1175/1520-0493(1928)56<140:DVORAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J., , and K. D. Jaffe, 1981: Diurnal variation of summer convection over West Africa and the tropical eastern Atlantic during 1974 and 1978. Mon. Wea. Rev., 109, 25272534, doi:10.1175/1520-0493(1981)109<2527:DVOSCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rio, C., , F. Hourdin, , J. Y. Grandpeix, , and J. P. Lafore, 2009: Shifting the diurnal cycle of parameterized deep convection over land. Geophys. Res. Lett., 36, L07809, doi:10.1029/2008GL036779.

    • Search Google Scholar
    • Export Citation
  • Russell, G. L., , J. R. Miller, , and D. Rind, 1995: A coupled atmosphere-ocean model for transient climate change studies. Atmos.–Ocean, 33, 683730, doi:10.1080/07055900.1995.9649550.

    • Search Google Scholar
    • Export Citation
  • Salby, M. L., , H. H. Hendon, , K. Woodberry, , and K. Tanaka, 1991: Analysis of global cloud imagery from multiple satellites. Bull. Amer. Meteor. Soc., 72, 467480, doi:10.1175/1520-0477(1991)072<0467:AOGCIF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sato, T., , H. Miura, , M. Satoh, , Y. N. Takayabu, , and Y. Wang, 2009: Diurnal cycle of precipitation in the tropics simulated in a global cloud-resolving model. J. Atmos. Sci., 22, 48094826, doi:10.1175/2009JCLI2890.1.

    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., and et al. , 2014: Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. J. Adv. Model. Earth Syst.,6, 141–184, doi:10.1002/2013MS000265.

  • Scinocca, J. F., , and N. A. McFarlane, 2013: The variability of modeled tropical precipitation. J. Atmos. Sci., 61, 19932015, doi:10.1175/1520-0469(2004)061<1993:TVOMTP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Slingo, J., , P. Inness, , R. Neale, , S. Woolnough, , and G. Yang, 2003: Scale interactions on diurnal to seasonal timescales and their relevance to model systematic errors. Ann. Geophys., 46, doi:10.4401/ag-3383.

    • Search Google Scholar
    • Export Citation
  • Smith, R. N. B., 1990: A scheme for predicting layer cloud and their water content in a general circulation model. Quart. J. Roy. Meteor. Soc., 116, 435460, doi:10.1002/qj.49711649210.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., 2000: The diurnal cycle of convection. Geophys. Res. Lett., 27, 21732176, doi:10.1029/2000GL011436.

  • Stanfield, R. E., , X. Dong, , B. Xi, , A. Kennedy, , A. D. Del Genio, , P. Minis, , and J. H. Jiang, 2014: Assessment of NASA GISS CMIP5 and post-CMIP5 simulated clouds and TOA radiation budgets using satellite observations. Part I: Cloud fraction and properties. J. Climate, 27,41894208, doi:10.1175/JCLI-D-13-00558.1.

    • Search Google Scholar
    • Export Citation
  • Stratton, R. A., , and A. J. Stirling, 2012: Improving the diurnal cycle of convection in GCMs. Quart. J. Roy. Meteor. Soc., 138, 11211134, doi:10.1002/qj.991.

    • Search Google Scholar
    • Export Citation
  • Stuart-Menteth, A. C., , I. S. Robinson, , and P. G. Challenor, 2003: A global study of diurnal warming using satellite-derived sea surface temperature. J. Geophys. Res., 108, 3155, doi:10.1029/2002JC001534.

    • Search Google Scholar
    • Export Citation
  • Su, H., , and J. H. Jiang, 2013: Tropical clouds and circulation changes during the 2006/07 and 2009/10 El Niños. J. Climate,26, 399–413, doi:10.1175/JCLI-D-12-00152.1.

  • Su, H., , W. G. Read, , J. H. Jiang, , J. W. Waters, , D. L. Wu, , and E. J. Fetzer, 2006: Enhanced positive water vapor feedback associated with tropical deep convection: New evidence from Aura MLS. Geophys. Res. Lett., 33, L05709, doi:10.1029/2005GL025505.

    • Search Google Scholar
    • Export Citation
  • Su, H., , J. H. Jiang, , J. Teixeira, , A. Gettelman, , X. Huang, , G. Stephens, , D. Vane, , and V. S. Perun, 2011: Comparison of regime-sorted tropical cloud profiles observed by CloudSat with GEOS5 analyses and two general circulation model simulations. J. Geophys. Res., 116, D09104, doi:10.1029/2010JD014971.

    • Search Google Scholar
    • Export Citation
  • Su, H., and et al. , 2013: Diagnosis of regime-dependent cloud simulation errors in CMIP5 models using “A-Train” satellite observations and reanalysis data. J. Geophys. Res. Atmos.,118, 2762–2780, doi:10.1029/2012JD018575.

  • Sui, C.-H., , X. Li, , and K.-M. Lau, 1998: Radiative–convective processes in simulated diurnal variations of tropical oceanic convection. J. Atmos. Sci., 55, 23452357, doi:10.1175/1520-0469(1998)055<2345:RCPISD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takemura, T., , T. Nozawa, , S. Emori, , T. Y. Nakajima, , and T. Nakajima, 2005: Simulation of climate response to aerosol direct and indirect effects with aerosol transport-radiation model. J. Geophys. Res., 110, D02202, doi:10.1029/2004JD005029.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., , R. J. Stouffer, , and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, P. C., 2012: Tropical outgoing longwave radiation and longwave cloud forcing diurnal cycles from CERES. J. Atmos. Sci., 69, 36523669, doi:10.1175/JAS-D-12-088.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, P. C., 2014: Variability of monthly diurnal cycle composites of TOA radiative fluxes in the tropics. J. Atmos. Sci., 71, 754766, doi:10.1175/JAS-D-13-0112.1.

    • Search Google Scholar
    • Export Citation
  • Tian, B., , B. J. Soden, , and X. Wu, 2004: Diurnal cycle of convection, clouds, and water vapor in the tropical upper troposphere: Satellites versus a general circulation model. J. Geophys. Res., 109, D10101, doi:10.1029/2003JD004117.

    • Search Google Scholar
    • Export Citation
  • Tian, B., , D. E. Waliser, , and E. J. Fetzer, 2006: Modulation of the diurnal cycle of tropical deep convective clouds by the MJO. Geophys. Res. Lett., 33, L20704, doi:10.1029/2006GL027752.

    • Search Google Scholar
    • Export Citation
  • Tian, B., , E. J. Fetzer, , B. H. Kahn, , J. Teixeira, , E. Manning, , and T. Hearty, 2013: Evaluating CMIP5 models using AIRS tropospheric air temperature and specific humidity climatology. J. Geophys. Res. Atmos., 118, 114–134, doi:10.1029/2012JD018607.

    • Search Google Scholar
    • Export Citation
  • von Salzen, K., and et al. , 2013: The Canadian Fourth Generation Atmospheric Global Climate Model (CanAM4). Part I: Representation of physical processes. Atmos.–Ocean, 51, 104125, doi:10.1080/07055900.2012.755610.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and et al. , 2009: Cloud ice: A climate model challenge with signs and expectations of progress. J. Geophys. Res.,114, D00A21, doi:10.1029/2008JD010015.

  • Wallace, J. M., 1975: Diurnal variations in precipitation and thunderstorm frequency over the conterminous United States. Mon. Wea. Rev., 103, 406419, doi:10.1175/1520-0493(1975)103<0406:DVIPAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., , S. Emori, , M. Satoh, , and H. Miura, 2009: A PDF-based hybrid prognostic cloud scheme for general circulation models. Climate Dyn., 33, 795816, doi:10.1007/s00382-008-0489-0.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and et al. , 2010: Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. J. Climate, 23, 63126335, doi:10.1175/2010JCLI3679.1.

    • Search Google Scholar
    • Export Citation
  • Wilson, D. R., , and S. P. Ballard, 1999: A microphysically based precipitation scheme for the UK Meteorological Office unified model. Quart. J. Roy. Meteor. Soc., 125, 16071636, doi:10.1002/qj.49712555707.

    • Search Google Scholar
    • Export Citation
  • Wu, D. L., , and J. H. Jiang, 2004: EOS MLS algorithm theoretical basis for cloud measurements. Jet Propulsion Laboratory Tech. Doc. JPL D-19299, 128 pp. [Available online at https://mls.jpl.nasa.gov/data/eos_cloud_atbd.pdf.]

  • Wu, D. L., , J. H. Jiang, , and C. P. Davis, 2006: EOS MLS cloud ice measurements and cloudy-sky radiative transfer model. IEEE Trans. Geosci. Remote Sens., 44, 11561165, doi:10.1109/TGRS.2006.869994.

    • Search Google Scholar
    • Export Citation
  • Wu, D. L., and et al. , 2008: Validation of the Aura MLS cloud ice water content (IWC) measurements. J. Geophys. Res., 113, D15S10, doi:10.1029/2007JD008931.

    • Search Google Scholar
    • Export Citation
  • Wu, D. L., and et al. , 2009: Comparisons of global cloud ice from MLS, CloudSat, and correlative data sets. J. Geophys. Res.,114, D00A24, doi:10.1029/2008JD009946.

  • Wu, T., 2012: A mass-flux cumulus parameterization scheme for large-scale models: Description and test with observations. Climate Dyn., 38, 725744, doi:10.1007/s00382-011-0995-3.

    • Search Google Scholar
    • Export Citation
  • Wu, T., and et al. , 2010: The Beijing Climate Center atmospheric general circulation model: Description and its performance for the present-day climate. Climate Dyn., 34, 123147, doi:10.1007/s00382-008-0487-2.

    • Search Google Scholar
    • Export Citation
  • Wu, T., and et al. , 2013: Global carbon budgets simulated by the Beijing Climate Center Climate System Model for the last century. J. Geophys. Res. Atmos., 118, 43264347, doi:10.1002/jgrd.50320.

    • Search Google Scholar
    • Export Citation
  • Yang, G., , and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129, 784801, doi:10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yoshimura, H., , R. Mizuta, , and H. Murakami, 2015: A spectral cumulus parameterization scheme interpolating between two convective updrafts with semi-Lagrangian calculation of transport by compensatory subsidence. Mon. Wea. Rev., 143, 597621, doi:10.1175/MWR-D-14-00068.1.

    • Search Google Scholar
    • Export Citation
  • Yukimoto, S., and et al. , 2011: Meteorological Research Institute Earth System Model Version 1 (MRI-ESM1) model description. Meteorological Research Institute Tech. Rep. 64, 83 pp. [Available online at http://www.mri-jma.go.jp/Publish/Technical/DATA/VOL_64/index_en.html.]

  • Yukimoto, S., and et al. , 2012: A new global climate model of Meteorological Research Institute: MRI-CGCM3—Model description and basic performance. J. Meteor. Soc. Japan, 90A, 2364, doi:10.2151/jmsj.2012-A02.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., 2002: Convective quasi-equilibrium in midlatitude continental environment and its effect on convective parameterization. J. Geophys. Res., 107, 4220, doi:10.1029/2001JD001005.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., , and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of convection in the Canadian Climate Centre general circulation model. Atmos.–Ocean, 33, 407446, doi:10.1080/07055900.1995.9649539.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 64 64 20
PDF Downloads 44 44 15

Evaluating the Diurnal Cycle of Upper-Tropospheric Ice Clouds in Climate Models Using SMILES Observations

View More View Less
  • 1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
  • | 2 Beijing Climate Center, China Meteorological Administration, Beijing, China
  • | 3 Canadian Centre for Climate Modeling and Analysis, Environment Canada, Victoria, British Columbia, Canada
  • | 4 Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
  • | 5 Goddard Institute for Space Studies, New York, New York
  • | 6 Laboratoire de Météorologie Dynamique, Institute Pierre Simon Laplace, Paris, France
  • | 7 Model for Interdisciplinary Research on Climate, Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Japan
  • | 8 Met Office Hadley Centre, Exeter, United Kingdom
  • | 9 Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Japan
  • | 10 National Center for Atmospheric Research, Boulder, Colorado
  • | 11 National Institute of Information and Communications Technology, Tokyo, Japan
  • | 12 Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
© Get Permissions
Restricted access

Abstract

Upper-tropospheric ice cloud measurements from the Superconducting Submillimeter Limb Emission Sounder (SMILES) on the International Space Station (ISS) are used to study the diurnal cycle of upper-tropospheric ice cloud in the tropics and midlatitudes (40°S–40°N) and to quantitatively evaluate ice cloud diurnal variability simulated by 10 climate models. Over land, the SMILES-observed diurnal cycle has a maximum around 1800 local solar time (LST), while the model-simulated diurnal cycles have phases differing from the observed cycle by −4 to 12 h. Over ocean, the observations show much smaller diurnal cycle amplitudes than over land with a peak at 1200 LST, while the modeled diurnal cycle phases are widely distributed throughout the 24-h period. Most models show smaller diurnal cycle amplitudes over ocean than over land, which is in agreement with the observations. However, there is a large spread of modeled diurnal cycle amplitudes ranging from 20% to more than 300% of the observed over both land and ocean. Empirical orthogonal function (EOF) analysis on the observed and model-simulated variations of ice clouds finds that the first EOF modes over land from both observation and model simulations explain more than 70% of the ice cloud diurnal variations and they have similar spatial and temporal patterns. Over ocean, the first EOF from observation explains 26.4% of the variance, while the first EOF from most models explains more than 70%. The modeled spatial and temporal patterns of the leading EOFs over ocean show large differences from observations, indicating that the physical mechanisms governing the diurnal cycle of oceanic ice clouds are more complicated and not well simulated by the current climate models.

Corresponding author address: Jonathan H. Jiang, Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91011. E-mail: jonathan.h.jiang@jpl.nasa.gov

Abstract

Upper-tropospheric ice cloud measurements from the Superconducting Submillimeter Limb Emission Sounder (SMILES) on the International Space Station (ISS) are used to study the diurnal cycle of upper-tropospheric ice cloud in the tropics and midlatitudes (40°S–40°N) and to quantitatively evaluate ice cloud diurnal variability simulated by 10 climate models. Over land, the SMILES-observed diurnal cycle has a maximum around 1800 local solar time (LST), while the model-simulated diurnal cycles have phases differing from the observed cycle by −4 to 12 h. Over ocean, the observations show much smaller diurnal cycle amplitudes than over land with a peak at 1200 LST, while the modeled diurnal cycle phases are widely distributed throughout the 24-h period. Most models show smaller diurnal cycle amplitudes over ocean than over land, which is in agreement with the observations. However, there is a large spread of modeled diurnal cycle amplitudes ranging from 20% to more than 300% of the observed over both land and ocean. Empirical orthogonal function (EOF) analysis on the observed and model-simulated variations of ice clouds finds that the first EOF modes over land from both observation and model simulations explain more than 70% of the ice cloud diurnal variations and they have similar spatial and temporal patterns. Over ocean, the first EOF from observation explains 26.4% of the variance, while the first EOF from most models explains more than 70%. The modeled spatial and temporal patterns of the leading EOFs over ocean show large differences from observations, indicating that the physical mechanisms governing the diurnal cycle of oceanic ice clouds are more complicated and not well simulated by the current climate models.

Corresponding author address: Jonathan H. Jiang, Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91011. E-mail: jonathan.h.jiang@jpl.nasa.gov
Save