Response of a Simulated Hurricane to Misalignment Forcing Compared to the Predictions of a Simple Theory

David A. Schecter NorthWest Research Associates, Boulder, Colorado

Search for other papers by David A. Schecter in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper compares the tilt dynamics of a mature tropical cyclone simulated with a conventional cloud model to reduced modeling results and theoretical predictions. The primary experiment involves a tropical cyclone of hurricane strength on the f plane exposed to a finite period of idealized misalignment forcing. A complementary experiment shows how the vortex responds to the same forcing when moisture and symmetric secondary circulation (SSC) are removed from the initial condition. It is found that the applied forcing excites a much stronger tilt mode in the dry nonconvective vortex than in the moist convective hurricane. The evolution of tilt in both experiments agrees reasonably well with a simple linear response theory that neglects the SSC and assumes moisture merely reduces static stability in the vortex core. An additional experiment with suspended cloud water but no substantial SSC supports the theoretical notion that reduction of static stability is sufficient to inhibit the excitation of a tilt mode. However, there is some discrepancy between theory and details of asymmetric convection in the eyewall region of the simulated hurricane. Moreover, a final experiment without moisture but with an artificially maintained secondary circulation suggests that the SSC has a nonnegligible role in reducing tilt. Diagnosis of the primary hurricane simulation further illustrates how the SSC has discernible influence over misalignment at least in the eyewall. Sensitivity of tilt dynamics to the azimuthally averaged vortex structure is briefly addressed.

Corresponding author address: David A. Schecter, NorthWest Research Associates, 3380 Mitchell Lane, Boulder, CO 80301. E-mail: schecter@nwra.com

Abstract

This paper compares the tilt dynamics of a mature tropical cyclone simulated with a conventional cloud model to reduced modeling results and theoretical predictions. The primary experiment involves a tropical cyclone of hurricane strength on the f plane exposed to a finite period of idealized misalignment forcing. A complementary experiment shows how the vortex responds to the same forcing when moisture and symmetric secondary circulation (SSC) are removed from the initial condition. It is found that the applied forcing excites a much stronger tilt mode in the dry nonconvective vortex than in the moist convective hurricane. The evolution of tilt in both experiments agrees reasonably well with a simple linear response theory that neglects the SSC and assumes moisture merely reduces static stability in the vortex core. An additional experiment with suspended cloud water but no substantial SSC supports the theoretical notion that reduction of static stability is sufficient to inhibit the excitation of a tilt mode. However, there is some discrepancy between theory and details of asymmetric convection in the eyewall region of the simulated hurricane. Moreover, a final experiment without moisture but with an artificially maintained secondary circulation suggests that the SSC has a nonnegligible role in reducing tilt. Diagnosis of the primary hurricane simulation further illustrates how the SSC has discernible influence over misalignment at least in the eyewall. Sensitivity of tilt dynamics to the azimuthally averaged vortex structure is briefly addressed.

Corresponding author address: David A. Schecter, NorthWest Research Associates, 3380 Mitchell Lane, Boulder, CO 80301. E-mail: schecter@nwra.com
Save
  • Antkowiak, A., and P. Brancher, 2004: Transient energy growth for the Lamb-Oseen vortex. Phys. Fluids, 16, L1–L4, doi:10.1063/1.1626123.

    • Search Google Scholar
    • Export Citation
  • Balmforth, N. J., S. G. Llewellyn Smith, and W. R. Young, 2001: Disturbing vortices. J. Fluid Mech., 426, 95–133, doi:10.1017/S0022112000002159.

    • Search Google Scholar
    • Export Citation
  • Billant, P., and S. Le Dizès, 2009: Waves on a columnar vortex in a strongly stratified fluid. Phys. Fluids, 21, 106602, doi:10.1063/1.3248366.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., and L. Wu, 2007: A numerical study of Hurricane Erin (2001). Part II: Shear and the organization of eyewall vertical motion. Mon. Wea. Rev., 135, 1179–1194, doi:10.1175/MWR3336.1.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., M. T. Montgomery, and Z. Pu, 2006: High-resolution simulation of hurricane Bonnie (1998). Part I: The organization of eyewall vertical motion. J. Atmos. Sci., 63, 19–42, doi:10.1175/JAS3598.1.

    • Search Google Scholar
    • Export Citation
  • Briggs, R. J., J. D. Daugherty, and R. H. Levy, 1970: Role of Landau damping in crossed-field electron beams and inviscid shear flow. Phys. Fluids, 13, 421–432, doi:10.1063/1.1692936.

    • Search Google Scholar
    • Export Citation
  • Bryan, G., 2008: On the computation of pseudoadiabatic entropy and equivalent potential temperature. Mon. Wea. Rev., 136, 5239–5245, doi:10.1175/2008MWR2593.1.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., G. Brunet, and M. K. Yau, 2003: Spiral bands in a simulated hurricane. Part II: Wave activity diagnostics. J. Atmos. Sci., 60, 1239–1256, doi:10.1175/1520-0469(2003)60<1239:SBIASH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., and Coauthors, 2003: RAMS 2001: Current status and future directions. Meteor. Atmos. Phys., 82, 5–29, doi:10.1007/s00703-001-0584-9.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., S. C. Jones, and M. Riemer, 2008: Hurricane vortex dynamics during Atlantic extratropical transition. J. Atmos. Sci., 65, 714–736, doi:10.1175/2007JAS2488.1.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 2076–2088, doi:10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and J. B. Klemp, 1982: On the effects of moisture on the Brunt-Väisälä frequency. J. Atmos. Sci., 39, 2152–2158, doi:10.1175/1520-0469(1982)039<2152:OTEOMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585–604, doi:10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 2249–2269, doi:10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hodyss, D., and D. S. Nolan, 2008: The Rossby-inertia-buoyancy instability in baroclinic vortices. Phys. Fluids, 20, 096602, doi:10.1063/1.2980354.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and F. P. Bretherton, 1972: Atmospheric frontogenesis models: Mathematical formulation and solution. J. Atmos. Sci., 29, 11–37, doi:10.1175/1520-0469(1972)029<0011:AFMMFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jones, R. W., H. E. Willoughby, and M. T. Montgomery, 2009: Alignment of hurricane-like vortices on f and β planes. J. Atmos. Sci., 66, 1779–1792, doi:10.1175/2008JAS2850.1.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 1995: The evolution of vortices in vertical shear. I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121, 821–851, doi:10.1002/qj.49712152406.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 2000a: The evolution of vortices in vertical shear. II: Large-scale asymmetries. Quart. J. Roy. Meteor. Soc., 126, 3137–3159, doi:10.1002/qj.49712657008.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 2000b: The evolution of vortices in vertical shear. III: Baroclinic vortices. Quart. J. Roy. Meteor. Soc., 126, 3161–3185, doi:10.1002/qj.49712657009.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 2004: On the ability of dry tropical-cyclone-like vortices to withstand vertical shear. J. Atmos. Sci., 61, 114–119, doi:10.1175/1520-0469(2004)061<0114:OTAODT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jordan, C. L., 1958: Mean soundings for the West Indies area. J. Meteor., 15, 91–97, doi:10.1175/1520-0469(1958)015<0091:MSFTWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lansky, I. M., T. M. O’Neil, and D. A. Schecter, 1997: A theory of vortex merger. Phys. Rev. Lett., 79, 1479–1482, doi:10.1103/PhysRevLett.79.1479.

    • Search Google Scholar
    • Export Citation
  • Louis, J. F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17, 187–202, doi:10.1007/BF00117978.

    • Search Google Scholar
    • Export Citation
  • Mahrer, Y., and R. A. Pielke, 1977: A numerical study of the airflow over irregular terrain. Beitr. Phys. Atmos., 50, 98–113.

  • McWilliams, J. C., L. P. Graves, and M. T. Montgomery, 2003: A formal theory for vortex Rossby waves and vortex evolution. Geophys. Astrophys. Fluid Dyn., 97, 275–309, doi:10.1080/0309192031000108698.

    • Search Google Scholar
    • Export Citation
  • Möller, J. D., and M. T. Montgomery, 2000: Tropical cyclone evolution via potential vorticity anomalies in a three-dimensional balance model. J. Atmos. Sci., 57, 3366–3387, doi:10.1175/1520-0469(2000)057<3366:TCEVPV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. J. Kallenbach, 1997: A theory of vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435–465, doi:10.1002/qj.49712353810.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and C. Lu, 1997: Free waves on barotropic vortices. I. Eigenmode structure. J. Atmos. Sci., 54, 1868–1885, doi:10.1175/1520-0469(1997)054<1868:FWOBVP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., and B. F. Farrell, 1999: Generalized stability analysis of asymmetric disturbances in one- and two-celled vortices maintained by radial inflow. J. Atmos. Sci., 56, 1282–1307, doi:10.1175/1520-0469(1999)056<1282:GSAOAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., M. T. Montgomery, and L. D. Grasso, 2001: The wavenumber-one instability and trochoidal motion of hurricane-like vortices. J. Atmos. Sci., 58, 3243–3270, doi:10.1175/1520-0469(2001)058<3243:TWOIAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Patra, R., 2004: Idealised modelling of tropical cyclones in vertical shear: The role of saturated ascent in the inner core. 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 4A.6. [Available online at https://ams.confex.com/ams/26HURR/techprogram/paper_75586.htm.]

  • Polvani, L. M., 1991: Two-layer geostrophic vortex dynamics. Part 2: Alignment and two-layer V-states. J. Fluid Mech., 225, 241–270, doi:10.1017/S0022112091002045.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., and M. T. Montgomery, 2001: Three-dimensional alignment and corotation of weak, TC-like vortices via linear vortex Rossby waves. J. Atmos. Sci., 58, 2306–2330, doi:10.1175/1520-0469(2001)058<2306:TDAACO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., and M. D. Eastin, 2012: Rapidly intensifying Hurricane Guillermo (1997). Part II: Resilience in shear. Mon. Wea. Rev., 140, 425–444, doi:10.1175/MWR-D-11-00080.1.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, and L. D. Grasso, 2004: A new look at the problem of tropical cyclones in shear flow: Vortex resiliency. J. Atmos. Sci., 61, 3–22, doi:10.1175/1520-0469(2004)061<0003:ANLATP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., R. Rogers, and S. Lorsolo, 2013: Environmental flow impacts on tropical cyclone structure diagnosed from airborne Doppler radar composites. Mon. Wea. Rev., 141, 2949–2969, doi:10.1175/MWR-D-12-00334.1.

    • Search Google Scholar
    • Export Citation
  • Riemer, M., M. T. Montgomery, and M. E. Nicholls, 2010: A new paradigm for intensity modification of tropical cyclones: Thermodynamic impact of vertical wind shear on the inflow layer. Atmos. Chem. Phys., 10, 3163–3188, doi:10.5194/acp-10-3163-2010.

    • Search Google Scholar
    • Export Citation
  • Riemer, M., M. T. Montgomery, and M. E. Nicholls, 2013: Further examination of the thermodynamic modification of the inflow layer of tropical cyclones by vertical wind shear. Atmos. Chem. Phys., 13, 327–346, doi:10.5194/acp-13-327-2013.

    • Search Google Scholar
    • Export Citation
  • Rogers, R., S. Chen, J. Tenerelli, and H. Willoughby, 2003: A numerical study of the impact of vertical shear on the distribution of rainfall in Hurricane Bonnie (1998). Mon. Wea. Rev., 131, 1577–1599, doi:10.1175//2546.1.

    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., 2008: The spontaneous imbalance of an atmospheric vortex at high Rossby number. J. Atmos. Sci., 65, 2498–2521, doi:10.1175/2007JAS2490.1.

    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., and M. T. Montgomery, 2003: On the symmetrization rate of an intense geophysical vortex. Dyn. Atmos. Oceans, 37, 55–88, doi:10.1016/S0377-0265(03)00015-0.

    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., and M. T. Montgomery, 2004: Damping and pumping of a vortex Rossby wave in a monotonic cyclone: Critical layer stirring versus inertia-buoyancy wave emission. Phys. Fluids, 16, 1334–1348, doi:10.1063/1.1651485.

    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., and M. T. Montgomery, 2006: Conditions that inhibit the spontaneous radiation of spiral inertia–gravity waves from an intense mesoscale cyclone. J. Atmos. Sci., 63, 435–456, doi:10.1175/JAS3641.1.

    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., and M. T. Montgomery, 2007: Waves in a cloudy vortex. J. Atmos. Sci., 64, 314–337, doi:10.1175/JAS3849.1.

  • Schecter, D. A., D. H. E. Dubin, A. C. Cass, C. F. Driscoll, I. M. Lansky, and T. M. O’Neil, 2000: Inviscid damping of asymmetries on a two-dimensional vortex. Phys. Fluids, 12, 2397–2412, doi:10.1063/1.1289505.

    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., M. T. Montgomery, and P. D. Reasor, 2002: A theory for the vertical alignment of a quasigeostrophic vortex. J. Atmos. Sci., 59, 150–168, doi:10.1175/1520-0469(2002)059<0150:ATFTVA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and M. T. Montgomery, 1993: A three-dimensional balance theory for rapidly rotating vortices. J. Atmos. Sci., 50, 3322–3335, doi:10.1175/1520-0469(1993)050<3322:ATDBTF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. Mon. Wea. Rev., 91, 99–164, doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, R. A., and M. N. Rosenbluth, 1990: Algebraic instability of hollow electron columns and cylindrical vortices. Phys. Rev. Lett., 64, 649–652, doi:10.1103/PhysRevLett.64.649.

    • Search Google Scholar
    • Export Citation
  • Tang, B., and K. Emanuel, 2010: Midlevel ventilation’s constraint on tropical cyclone intensity. J. Atmos. Sci., 67, 1817–1830, doi:10.1175/2010JAS3318.1.

    • Search Google Scholar
    • Export Citation
  • Vandermeirsh, F., Y. M. Morel, and G. Sutyrin, 2002: Resistance of a coherent vortex to a vertical shear. J. Phys. Oceanogr., 32, 3089–3100, doi:10.1175/1520-0485(2002)032<3089:ROACVT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Viera, F., 1995: On the alignment and axisymmetrization of a vertically tilted geostrophic vortex. J. Fluid Mech., 289, 29–50, doi:10.1017/S0022112095001224.

    • Search Google Scholar
    • Export Citation
  • Walko, R. L., W. R. Cotton, M. P. Meyers, and J. Y. Harrington, 1995: New RAMS cloud microphysics parameterization. Part 1: The single-moment scheme. Atmos. Res., 38, 29–62, doi:10.1016/0169-8095(94)00087-T.

    • Search Google Scholar
    • Export Citation
  • Walko, R. L., and Coauthors, 2000: Coupled atmosphere–biophysics–hydrology models for environmental modeling. J. Appl. Meteor., 39, 931–944, doi:10.1175/1520-0450(2000)039<0931:CABHMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and G. J. Holland, 1996: Tropical cyclone motion and evolution in vertical shear. J. Atmos. Sci., 53, 3313–3332, doi:10.1175/1520-0469(1996)053<3313:TCMAEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wong, M. L. M., and J. C. L. Chan, 2004: Tropical cyclone intensity in vertical wind shear. J. Atmos. Sci., 61, 1869–1876, doi:10.1175/1520-0469(2004)061<1859:TCIIVW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, D. L., and C. Q. Kieu, 2006: Potential vorticity diagnostics of a simulated hurricane. Part II: Quasi-balanced contributions to forced secondary circulations. J. Atmos. Sci., 63, 2898–2914, doi:10.1175/JAS3790.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., and D. Tao, 2013: Effects of vertical wind shear on the predictability of tropical cyclones. J. Atmos. Sci., 70, 975–983, doi:10.1175/JAS-D-12-0133.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 280 99 23
PDF Downloads 182 51 2