• Adhikari, L., , Z. Wang, , and D. Liu, 2010: Microphysical properties of Antarctic polar stratospheric clouds and their dependence on tropospheric cloud systems. J. Geophys. Res., 115, D00H18, doi:10.1029/2009JD012125.

    • Search Google Scholar
    • Export Citation
  • AIRS Science Team, and J. Texeira, 2013: Aqua AIRS level 2 standard physical retrieval (AIRS+AMSU), version 006. NASA Goddard Earth Science Data and Information Services Center (GES DISC), doi:10.5067/AQUA/AIRS/DATA201.

  • Aumann, H. H., and et al. , 2003: AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems. IEEE Trans. Geosci. Remote Sens.,41, 253–264, doi:10.1109/TGRS.2002.808356.

    • Search Google Scholar
    • Export Citation
  • Bi, L., , P. Yang, , G. W. Kattawar, , B. A. Baum, , Y. X. Hu, , D. M. Winker, , R. S. Brock, , and J. Q. Lu, 2009: Simulation of the color ratio associated with the backscattering of radiation by ice particles at the wavelengths of 0.532 and 1.064 μm. J. Geophys. Res., 114, D00H08, doi:10.1029/2009JD011759.

    • Search Google Scholar
    • Export Citation
  • Blanchard, D. C., , and A. H. Woodcock, 1957: Bubble formation and modification in the sea and its meteorological significance. Tellus, 9, 145158, doi:10.1111/j.2153-3490.1957.tb01867.x.

    • Search Google Scholar
    • Export Citation
  • Blanchard, D. C., , and A. H. Woodcock, 1980: The production, concentration, and vertical distribution of the sea-salt aerosol. Ann. N. Y. Acad. Sci., 338, 330347, doi:10.1111/j.1749-6632.1980.tb17130.x.

    • Search Google Scholar
    • Export Citation
  • Bohren, C. F., , and D. R. Huffman, 1983: Absorption and Scattering of Light by Small Particles. John Wiley & Sons, 544 pp.

  • Bretherton, C. S., , and M. C. Wyant, 1997: Moisture transport, lower-tropospheric stability, and decoupling of cloud-topped boundary layers. J. Atmos. Sci., 54, 148167, doi:10.1175/1520-0469(1997)054<0148:MTLTSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Caldwell, P., , Y. Zhang, , and S. Klein, 2013: CMIP3 subtropical stratocumulus cloud feedback interpreted through a mixed-layer model. J. Climate, 26,16071625, doi:10.1175/JCLI-D-12-00188.1.

    • Search Google Scholar
    • Export Citation
  • Charlson, R. J., , D. S. Covert, , and T. V. Larson, 1984: Observations of the effect of humidity on light scattering by aerosols. Hygroscopic Aerosols, T. H. Ruhnke and A. Deepak, Eds., A. Deepak Publishers, 35–44.

  • Clarke, A. D., , V. Kapustin, , S. Howell, , K. Moore, , B. Lienert, , S. Masonis, , T. Anderson, , and D. Covert, 2003: Sea salt size distributions from breaking waves: Implications for marine aerosol production and optical extinction measurements during SEAS. J. Atmos. Oceanic Technol., 20, 13621374, doi:10.1175/1520-0426(2003)020<1362:SSDFBW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Conzemius, R. J., , and E. Fedorovich, 2006: Dynamics of sheared convective boundary layer entrainment. Part I: Methodological background and large-eddy simulations. J. Atmos. Sci., 63, 11511178, doi:10.1175/JAS3691.1.

    • Search Google Scholar
    • Export Citation
  • Covert, D. S., , R. J. Charlson, , and N. C. Ahlquist, 1972: A study of the relationship of chemical composition and humidity to light scattering by aerosols. J. Appl. Meteor., 11, 968976, doi:10.1175/1520-0450(1972)011<0968:ASOTRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fan, T., , and O. B. Toon, 2011: Modeling sea-salt aerosol in a coupled climate and sectional microphysical model: Mass, optical depth and number concentration. Atmos. Chem. Phys., 11, 45874610, doi:10.5194/acp-11-4587-2011.

    • Search Google Scholar
    • Export Citation
  • Fitzgerald, J. W., , W. A. Hoppel, , and F. Gelbard, 1998: A one-dimensional sectional model to simulate multicomponent aerosol dynamics in the marine boundary layer: 1. Model description. J. Geophys. Res., 103, 16 08516 102, doi:10.1029/98JD01019.

    • Search Google Scholar
    • Export Citation
  • Gerber, H. E., 1985: Relative-humidity parameterization of the Navy Aerosol Model (NAM). Naval Research Laboratory Rep. 8956, 13 pp. [Available online at http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA163209.]

  • Glantz, P., , E. Nilsson, , and W. von Hoyningen-Huene, 2009: Estimating a relationship between aerosol optical thickness and surface wind speed over the ocean. Atmos. Res., 92, 5868, doi:10.1016/j.atmosres.2008.08.010.

    • Search Google Scholar
    • Export Citation
  • Gong, S. L., , L. A. Barrie, , and M. Lazare, 2002: Canadian Aerosol Module (CAM): A size-segregated simulation of atmospheric aerosol processes for climate and air quality models 2. Global sea-salt aerosol and its budgets. J. Geophys. Res., 107, 4779, doi:10.1029/2001JD002004.

    • Search Google Scholar
    • Export Citation
  • Hansen, J. E., , and L. D. Travis, 1974: Light scattering in planetary atmospheres. Space Sci. Rev., 16, 527610, doi:10.1007/BF00168069.

    • Search Google Scholar
    • Export Citation
  • Hegg, D. A., , T. L. Larson, , and P. F. Yuen, 1993: A theoretical study of the effect of relative humidity on light scattering by tropospheric aerosols. J. Geophys. Res., 98, 18 43518 439, doi:10.1029/93JD01928.

    • Search Google Scholar
    • Export Citation
  • Huang, Q., , J. H. Marsham, , D. J. Parker, , W. Tian, , and T. Weckwert, 2009: A comparison of roll and nonroll convection and the subsequent deepening moist convection: An LEM case study based on SCMS data. Mon. Wea. Rev., 137, 350365, doi:10.1175/2008MWR2450.1.

    • Search Google Scholar
    • Export Citation
  • Hunt, W. H., , D. M. Winker, , M. A. Vaughan, , K. A. Powell, , P. L. Lucker, , and C. Weimer, 2009: CALIPSO lidar description and performance assessment. J. Atmos. Oceanic Technol.,26, 12141228, doi:10.1175/2009JTECHA1223.1.

    • Search Google Scholar
    • Export Citation
  • Jaeglé, L., , P. K. Quinn, , T. S. Bates, , B. Alexander, , and J.-T. Lin, 2011: Global distribution of sea salt aerosols: New constraints from in situ and remote sensing observations. Atmos. Chem. Phys., 11, 31373157, doi:10.5194/acp-11-3137-2011.

    • Search Google Scholar
    • Export Citation
  • Jones, C. R., , C. S. Bretherton, , and D. Leon, 2011: Coupled vs. decoupled boundary layers in VOCALS-Rex. Atmos. Chem. Phys., 11, 71437153, doi:10.5194/acp-11-7143-2011.

    • Search Google Scholar
    • Export Citation
  • Kawanishi, T., and et al. , 2003: The Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), NASDA’s contribution to the EOS for global energy and water cycle studies. IEEE Trans. Geosci. Remote Sens., 41, 184194, doi:10.1109/TGRS.2002.808331.

    • Search Google Scholar
    • Export Citation
  • Kiliyanpilakkil, V. P., , and N. Meskhidze, 2011: Deriving the effect of wind speed on clean maritime aerosol optical properties using the A-Train satellites. Atmos. Chem. Phys. Discuss., 11, 45994630, doi:10.5194/acpd-11-4599-2011.

    • Search Google Scholar
    • Export Citation
  • King, M. D., 1982: Sensitivity of constrained linear inversions to the selection of the Lagrange multiplier. J. Atmos. Sci., 39, 13561369, doi:10.1175/1520-0469(1982)039<1356:SOCLIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kinne, S., and et al. , 2006: An AeroCom initial assessment—Optical properties in aerosol component modules of global models. Atmos. Chem. Phys., 6, 18151834, doi:10.5194/acp-6-1815-2006.

    • Search Google Scholar
    • Export Citation
  • Lewis, E. R., , and S. E. Schwartz, 2006: Comment on “Size distribution of sea-salt emissions as a function of relative humidity.” Atmos. Environ., 40, 588590, doi:10.1016/j.atmosenv.2005.08.043.

    • Search Google Scholar
    • Export Citation
  • Liu, D., , Z. Wang, , Z. Liu, , D. Winker, , and C. Trepte, 2008: A height resolved global view of dust aerosols from the first year CALIPSO lidar measurements. J. Geophys. Res., 113, D16214, doi:10.1029/2007JD009776.

    • Search Google Scholar
    • Export Citation
  • Luo, T., , R. M. Yuan, , and Z. Wang, 2014a: Lidar-based remote sensing of atmospheric boundary layer height over land and ocean. Atmos. Meas. Tech., 7, 173182, doi:10.5194/amt-7-173-2014.

    • Search Google Scholar
    • Export Citation
  • Luo, T., , R. M. Yuan, , and Z. Wang, 2014b: On factors controlling marine boundary layer aerosol optical depth. J. Geophys. Res. Atmos., 119, 3321–3334, doi:10.1002/2013JD020936.

    • Search Google Scholar
    • Export Citation
  • Mace, G., 2007: Level 2 GEOPROF product process description and interface control document algorithm version 5.3. CloudSat Project, 44 pp. [Available online at http://www.cloudsat.cira.colostate.edu/ICD/2B-GEOPROF/2B-GEOPROF_PDICD_5.3.doc.]

  • Martin, S. T., 2000: Phase transitions of aqueous atmospheric particles. Chem. Rev., 100, 34033454, doi:10.1021/cr990034t.

  • NDBC, 2009: Handbook of automated data quality control checks and procedures. National Data Buoy Center Tech. Doc. 09-02, 78 pp. [Available online at http://www.ndbc.noaa.gov/NDBCHandbookofAutomatedDataQualityControl2009.pdf.]

  • Nessler, R., , E. Weingartner, , and U. Baltensperger, 2005: Effect of humidity on aerosol light absorption and its implications for extinction and the single scattering albedo illustrated for a site in the lower free troposphere. J. Aerosol Sci., 36, 958972, doi:10.1016/j.jaerosci.2004.11.012.

    • Search Google Scholar
    • Export Citation
  • O’Dowd, C. D., , and G. de Leeuw, 2007: Marine aerosol production: A review of the current knowledge. Philos. Trans. Roy. Soc. London, A365, 17531774, doi:10.1098/rsta.2007.2043.

    • Search Google Scholar
    • Export Citation
  • Partain, P., 2004: Cloudsat ECMWF-AUX auxiliary data process description and interface control document. CloudSat Project, 8 pp. [Available online at http://www.cloudsat.cira.colostate.edu/ICD/ECMWF-AUX/ECMWF-AUX_PDICD_3.0.pdf.]

  • Pilinis, C., , S. N. Pandis, , and J. H. Seinfeld, 1995: Sensitivity of direct climate forcing by atmospheric aerosols to aerosol size and composition. J. Geophys. Res., 100, 18 73918 754, doi:10.1029/95JD02119.

    • Search Google Scholar
    • Export Citation
  • Randles, C. A., , L. M. Russell, , and V. Ramaswamy, 2004: Hygroscopic and optical properties of organic sea salt aerosol and consequences for climate forcing. Geophys. Res. Lett., 31, L16108, doi:10.1029/2004GL020628.

    • Search Google Scholar
    • Export Citation
  • Rind, D., and et al. , 2009: The way forward. Atmospheric aerosol properties and climate impacts, U.S. Climate Change Science Program Synthesis and Assessment Product 2.3, National Aeronautics and Space Administration, 85–90.

  • Sayer, A. M., , A. Smirnov, , N. C. Hsu, , and B. N. Holben, 2012: A pure marine aerosol model, for use in remote sensing applications. J. Geophys. Res., 117, D05213, doi:10.1029/2011JD016689.

    • Search Google Scholar
    • Export Citation
  • Shettle, E. P., , and W. F. Robert, 1979: Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties. Air Force Geophysics Laboratory Tech. Rep. AFGL-TR-79-0214, 23 pp. [Available online at http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA085951.]

  • Sievering, H., , J. Cainey, , M. Harvey, , J. McGregor, , S. Nichol, , and A. P. Quinn, 2004: Aerosol non-sea-salt sulfate in the remote marine boundary layer under clear-sky and normal cloudiness conditions: Ocean-derived biogenic alkalinity enhances sea-salt sulfate production by ozone oxidation. J. Geophys. Res., 109, D19317, doi:10.1029/2003JD004315.

    • Search Google Scholar
    • Export Citation
  • Smirnov, A. V., , and K. S. Shifrin, 1989: Relationship of optical thickness to humidity of air above the ocean. Izv. Atmos. Oceanic Phys.,25, 374–379.

    • Search Google Scholar
    • Export Citation
  • Smirnov, A. V., , Y. Villevalde, , N. T. O’Neill, , A. Royer, , and A. Tarussov, 1995: Aerosol optical depth over the oceans: Analysis in terms of synoptic air mass types. J. Geophys. Res., 100, 16 63916 650, doi:10.1029/95JD01265.

    • Search Google Scholar
    • Export Citation
  • Smith, M. H., , P. M. Park, , and I. E. Consterdine, 1993: Marine aerosol concentrations and estimated fluxes over the sea. Quart. J. Roy. Meteor. Soc., 119, 809824, doi:10.1002/qj.49711951211.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., , D. Qin, , M. Manning, , Z. Chen, , M. Marquis, , K. Averyt, , M. Tignor, , and H. L. Miller Jr., Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Spada, M., , O. Jorba, , C. Pérez, , Z. García-Pando, , Z. Janjic, , and J. M. Baldasano, 2013: Modeling and evaluation of the global sea-salt aerosol distribution: Sensitivity to size-resolved and sea-surface temperature dependent emission schemes. Atmos. Chem. Phys., 13, 11 73511 755, doi:10.5194/acp-13-11735-2013.

    • Search Google Scholar
    • Export Citation
  • Tang, I. N., 1996: Chemical and size effects of hygroscopic aerosols on light scattering coefficients. J. Geophys. Res., 101, 19 24519 250, doi:10.1029/96JD03003.

    • Search Google Scholar
    • Export Citation
  • Tang, I. N., 1997: Thermodynamic and optical properties of mixed-salt aerosols of atmospheric importance. J. Geophys. Res., 102, 18831893, doi:10.1029/96JD03085.

    • Search Google Scholar
    • Export Citation
  • Tang, I. N., , and H. R. Munkelwitz, 1994: Aerosol phase transformation and growth in the atmosphere. J. Appl. Meteor., 33, 791796, doi:10.1175/1520-0450(1994)033<0791:APTAGI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Textor, C., and et al. , 2006: Analysis and quantification of the diversities of aerosol life cycles within AEROCOM. Atmos. Chem. Phys., 6, 17771813, doi:10.5194/acp-6-1777-2006.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., , G. Stephens, , and T. Deshler, 2008: Association of Antarctic polar stratospheric cloud formation on tropospheric cloud systems. Geophys. Res. Lett., 35, L13806, doi:10.1029/2008GL034209.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., , C. Gentemann, , and P. Ashcroft, 2003: On-orbit calibration of AMSR-E and the retrieval of ocean products. 12th Conf. on Satellite Meteorology and Oceanography, Long Beach, CA, Amer. Meteor. Soc., P5.9. [Available online at https://ams.confex.com/ams/annual2003/techprogram/paper_56760.htm.]

  • Winker, D. M., , M. A. Vaughan, , A. Omar, , Y. Hu, , K. A. Powell, , Z. Liu, , W. H. Hunt, , and S. A. Young, 2009: Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Oceanic Technol., 26, 23102323, doi:10.1175/2009JTECHA1281.1.

    • Search Google Scholar
    • Export Citation
  • Wise, M. E., , E. J. Freney, , C. A. Tyree, , J. O. Allen, , S. T. Martin, , L. M. Russell, , and P. R. Buseck, 2009: Hygroscopic behavior and liquid-layer composition of aerosol particles generated from natural and artificial seawater. J. Geophys. Res., 114, D03201, doi:10.1029/2008JD010449.

    • Search Google Scholar
    • Export Citation
  • WMO, 2006: Guide to meteorological instruments and observations. 7th ed. WMO 8, 681 pp.

  • Wood, R., , and C. S. Bretherton, 2004: Boundary layer depth, entrainment, and decoupling in the cloud-capped subtropical and tropical marine boundary layer. J. Climate, 17, 35763588, doi:10.1175/1520-0442(2004)017<3576:BLDEAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, K. M., , E. M. Knipping, , A. S. Wexler, , P. V. Bhave, , and G. S. Tonnesen, 2005: Size distribution of sea-salt emissions as a function of relative humidity. Atmos. Environ., 39, 33733379, doi:10.1016/j.atmosenv.2005.02.032.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 20 20 4
PDF Downloads 15 15 0

Quantifying the Hygroscopic Growth of Marine Boundary Layer Aerosols by Satellite-Based and Buoy Observations

View More View Less
  • 1 Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming, and School of Earth and Space Science, University of Science and Technology of China, Hefei, China
  • | 2 School of Earth and Space Science, University of Science and Technology of China, Hefei, China
  • | 3 Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming
© Get Permissions
Restricted access

Abstract

In this study, collocated satellite and buoy observations as well as satellite observations over an extended region during 2006–10 were used to quantify the humidity effects on marine boundary layer (MBL) aerosols. Although the near-surface aerosol size increases with increasing near-surface relative humidity (RH), the influence of RH decreases with increasing height and is mainly limited to the lower well-mixed layer. In addition, the size changes of MBL aerosols with RH are different for low and high surface wind () conditions as revealed by observations and Mie scattering calculations, which may be related to different dominant processes (i.e., the hygroscopic growth process during low wind and the evaporation process during sea salt production during high wind). These different hygroscopic processes under the different conditions, together with the MBL processes, control the behaviors of the MBL aerosol optical depth () with RH. In particular, under high conditions, the MBL stratifications effects can overwhelm the humidity effects, resulting in a weak relationship of MBL on RH. Under low conditions, the stronger hygroscopic growth can overwhelm the MBL stratification effects and enhance the MBL with increasing RH. These results are important to evaluate and to improve MBL aerosols simulations in climate models.

Corresponding author address: Zhien Wang, Department of Atmospheric Science, College of Engineering and Applied Science, University of Wyoming, Dept. 3038, 1000 E. University Avenue, Laramie, WY 82071. E-mail: zwang@uwyo.edu

Abstract

In this study, collocated satellite and buoy observations as well as satellite observations over an extended region during 2006–10 were used to quantify the humidity effects on marine boundary layer (MBL) aerosols. Although the near-surface aerosol size increases with increasing near-surface relative humidity (RH), the influence of RH decreases with increasing height and is mainly limited to the lower well-mixed layer. In addition, the size changes of MBL aerosols with RH are different for low and high surface wind () conditions as revealed by observations and Mie scattering calculations, which may be related to different dominant processes (i.e., the hygroscopic growth process during low wind and the evaporation process during sea salt production during high wind). These different hygroscopic processes under the different conditions, together with the MBL processes, control the behaviors of the MBL aerosol optical depth () with RH. In particular, under high conditions, the MBL stratifications effects can overwhelm the humidity effects, resulting in a weak relationship of MBL on RH. Under low conditions, the stronger hygroscopic growth can overwhelm the MBL stratification effects and enhance the MBL with increasing RH. These results are important to evaluate and to improve MBL aerosols simulations in climate models.

Corresponding author address: Zhien Wang, Department of Atmospheric Science, College of Engineering and Applied Science, University of Wyoming, Dept. 3038, 1000 E. University Avenue, Laramie, WY 82071. E-mail: zwang@uwyo.edu
Save