• Alexander, M. J., , and H. Teitelbaum, 2007: Observation and analysis of a large amplitude mountain wave event over the Antarctic peninsula. J. Geophys. Res., 112, D21103, doi:10.1029/2006JD008368.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., , J. H. Beres, , and L. Pfister, 2000: Tropical stratospheric gravity wave activity and relationships to clouds. J. Geophys. Res., 105, 22 299–22 309, doi:10.1029/2000JD900326.

    • Search Google Scholar
    • Export Citation
  • Alexander, S. P., , T. Tsuda, , Y. Shibagaki, , and T. Kozu, 2008: Seasonal gravity wave activity observed with the Equatorial Atmosphere Radar and its relation to rainfall information from the Tropical Rainfall Measuring Mission. J. Geophys. Res., 113, D02104, doi:10.1029/2007JD008777.

    • Search Google Scholar
    • Export Citation
  • Alexander, S. P., , A. R. Klekociuk, , and D. J. Murphy, 2011: Rayleigh lidar observations of gravity wave activity in the winter upper stratosphere and lower mesosphere above Davis, Antarctica (69°S, 78°E). J. Geophys. Res., 116, D13109, doi:10.1029/2010JD015164.

    • Search Google Scholar
    • Export Citation
  • Alexander, S. P., , A. R. Klekociuk, , A. J. McDonald, , and M. C. Pitts, 2013a: Quantifying the role of orographic gravity waves on polar stratospheric cloud occurrence in the Antarctic and the Arctic. J. Geophys. Res. Atmos., 118, 11 49311 507, doi:10.1002/2013JD020122.

    • Search Google Scholar
    • Export Citation
  • Alexander, S. P., , D. J. Murphy, , and A. R. Klekociuk, 2013b: High resolution VHF radar measurements of tropopause structure and variability at Davis, Antarctica (69°S, 78°E). Atmos. Chem. Phys., 13, 31213132, doi:10.5194/acp-13-3121-2013.

    • Search Google Scholar
    • Export Citation
  • Arnault, J., , and S. Kirkwood, 2012: Dynamical influence of gravity waves generated by the Vestfjella Mountains in Antarctica: Radar observations, fine-scale modelling and kinetic energy budget analysis. Tellus, 64A, 17 261, doi:10.3402/tellusa.v64i0.17261.

    • Search Google Scholar
    • Export Citation
  • Baumgaertner, A. J. G., , and A. J. McDonald, 2007: A gravity wave climatology for Antarctica compiled from Challenging Minisatellite Payload/Global Positioning System (CHAMP/GPS) radio occultations. J. Geophys. Res., 112, D05103, doi:10.1029/2006JD007504.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., , A. J. Monaghan, , K. W. Manning, , and J. G. Powers, 2005: Real-time forecasting for the Antarctic: An evaluation of the Antarctic Mesoscale Prediction System (AMPS). Mon. Wea. Rev., 133, 579603, doi:10.1175/MWR-2881.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dörnbrack, A., , M. Leutbecher, , J. Reichardt, , A. Behrendt, , K.-P. Müller, , and G. Baumgarten, 2001: Relevance of mountain wave cooling for the formation of polar stratospheric clouds over Scandinavia: Mesoscale dynamics and observations for January 1997. J. Geophys. Res., 106, 15691581, doi:10.1029/2000JD900194.

    • Search Google Scholar
    • Export Citation
  • Dörnbrack, A., , T. Birner, , A. Fix, , H. Flentje, , A. Meister, , H. Schmid, , E. V. Browell, , and M. J. Mahoney, 2002: Evidence for inertia gravity waves forming polar stratospheric clouds over Scandinavia. J. Geophys. Res., 107, 8287, doi:10.1029/2001JD000452.

    • Search Google Scholar
    • Export Citation
  • Dowdy, A. J., , R. A. Vincent, , M. Tsutsumi, , K. Igarashi, , Y. Murayama, , W. Singer, , and D. J. Murphy, 2007: Polar mesosphere and lower thermosphere dynamics: 1. Mean wind and gravity wave climatologies. J. Geophys. Res., 112, D17104, doi:10.1029/2006JD008126.

    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., , M. A. Shapiro, , Q. Jiang, , and D. Bartels, 2005: Large-amplitude mountain wave breaking over Greenland. J. Atmos. Sci., 62, 31063126, doi:10.1175/JAS3528.1.

    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., , and R. A. Vincent, 1993: VHF radar observations of gravity-wave production by cold fronts over Southern Australia. J. Atmos. Sci., 50, 785806, doi:10.1175/1520-0469(1993)050<0785:VROOGW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., , and R. A. Vincent, 1987: Mesospheric momentum flux studies at Adelaide, Australia: Observations and a gravity wave–tidal interaction model. J. Atmos. Sci., 44, 605619, doi:10.1175/1520-0469(1987)044<0605:MMFSAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., , and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41, 1003, doi:10.1029/2001RG000106.

    • Search Google Scholar
    • Export Citation
  • Fukao, S., and et al. , 2003: Equatorial Atmosphere Radar (EAR): System description and first results. Radio Sci., 38, 1053, doi:10.1029/2002RS002767.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., , and B. A. Boville, 1994: “Downward control” of the mean meridional circulation and temperature distribution of the polar winter stratosphere. J. Atmos. Sci., 51, 22382245, doi:10.1175/1520-0469(1994)051<2238:COTMMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Guest, F. M., , M. J. Reeder, , C. J. Marks, , and D. J. Karoly, 2000: Inertia–gravity waves observed in the lower stratosphere over Macquarie Island. J. Atmos. Sci., 57, 737752, doi:10.1175/1520-0469(2000)057<0737:IGWOIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., , C. J. Marks, , M. E. McIntyre, , T. G. Shepherd, , and K. P. Shine, 1991: On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48, 651678, doi:10.1175/1520-0469(1991)048<0651:OTCOED>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., , J. D. Doyle, , S. D. Eckermann, , Q. Jiang, , and P. A. Reinecke, 2014: What is the source of the stratospheric gravity wave belt in austral winter? J. Atmos. Sci., 71, 15831592, doi:10.1175/JAS-D-13-0332.1.

    • Search Google Scholar
    • Export Citation
  • Hertzog, A., , G. Boccara, , R. A. Vincent, , F. Vial, , and P. Cocquerez, 2008: Estimation of gravity wave momentum flux and phase speeds from quasi-Lagrangian stratospheric balloon flights. Part II: Results from the Vorcore campaign in Antarctica. J. Atmos. Sci., 65, 30563070, doi:10.1175/2008JAS2710.1.

    • Search Google Scholar
    • Export Citation
  • Höpfner, M., and et al. , 2006: MIPAS detects Antarctic stratospheric belt of NAT PSCs caused by mountain waves. Atmos. Chem. Phys., 6, 12211230, doi:10.5194/acp-6-1221-2006.

    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., , D. L. Wu, , M. J. Alexander, , M. Xue, , M. Hu, , S. Pawson, , and J. R. Perkins, 2007: Stratospheric gravity wave simulation over Greenland during 24 January 2005. J. Geophys. Res., 112, D10115, doi:10.1029/2006JD007823.

    • Search Google Scholar
    • Export Citation
  • Luce, H., , S. Fukao, , M. Yamamoto, , C. Sidi, , and F. Dalaudier, 2001: Validation of winds measured by MU radar with GPS radiosondes during the MUTSI campaign. J. Atmos. Oceanic Technol., 18, 817829, doi:10.1175/1520-0426(2001)018<0817:VOWMBM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Murayama, Y., , T. Tsuda, , and S. Fukao, 1994: Seasonal variation of gravity wave activity in the lower atmosphere observed with the MU radar. J. Geophys. Res., 99, 23 05723 069, doi:10.1029/94JD01717.

    • Search Google Scholar
    • Export Citation
  • Orr, A., , T. Phillips, , S. Webster, , A. Elvidge, , M. Weeks, , S. Hosking, , and J. Turner, 2014: Met Office Unified Model high-resolution simulations of a strong wind event in Antarctica. Quart. J. Roy. Meteor. Soc., 140, 2287–2297, doi:10.1002/qj.2296.

    • Search Google Scholar
    • Export Citation
  • O’Sullivan, D., , and T. J. Dunkerton, 1995: Generation of inertia–gravity waves in a simulated life cycle of baroclinic instability. J. Atmos. Sci., 52, 36953716, doi:10.1175/1520-0469(1995)052<3695:GOIWIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Parish, T. R., , and D. H. Bromwich, 1987: The surface windfield over the Antarctic ice sheets. Nature, 328, 5154, doi:10.1038/328051a0.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., , and F. Zhang, 2014: Internal gravity waves from atmospheric jets and fronts. Rev. Geophys., 52, 33–76, doi:10.1002/2012RG000419.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., , H. Teitelbaum, , and V. Zeitlin, 2003: Inertia gravity wave generation by the tropospheric midlatitude jet as given by the Fronts and Atlantic Storm-Track Experiment radio soundings. J. Geophys. Res., 108, 4686, doi:10.1029/2003JD003535.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., , A. Hertzog, , and H. Teitelbaum, 2008: Observations and simulations of a large-amplitude mountain wave breaking over the Antarctic Peninsula. J. Geophys. Res., 113, D16113, doi:10.1029/2007JD009739.

    • Search Google Scholar
    • Export Citation
  • Powers, J. G., , A. J. Monaghan, , A. M. Cayette, , D. H. Bromwich, , Y.-H. Kuo, , and K. W. Manning, 2003: Real-time mesoscale modeling over Antarctica: The Antarctic Mesoscale Prediction System. Bull. Amer. Meteor. Soc., 84, 15331545, doi:10.1175/BAMS-84-11-1533.

    • Search Google Scholar
    • Export Citation
  • Reid, I. M., , D. A. Holdsworth, , S. Kovalam, , R. A. Vincent, , and J. Stickland, 2005: Mount Gambier (38°S, 141°E) prototype VHF wind profiler. Radio Sci., 40, RS5007, doi:10.1029/2004RS003055.

    • Search Google Scholar
    • Export Citation
  • Sato, K., 1993: Small-scale wind disturbances observed by the MU radar during the passage of Typhoon Kelly. J. Atmos. Sci., 50, 518538, doi:10.1175/1520-0469(1993)050<0518:SSWDOB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sato, K., and et al. , 2014: Program of the Antarctic Syowa MST/IS radar (PANSY). J. Atmos. Sol.-Terr. Phys., 118, 2–15, doi:10.1016/j.jastp.2013.08.022.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., , and K. Keay, 2000: Mean Southern Hemisphere extratropical cyclone behavior in the 40-year NCEP–NCAR reanalysis. J. Climate, 13, 873885, doi:10.1175/1520-0442(2000)013<0873:MSHECB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tsuda, T., , Y. Murayama, , H. Wiryosumarto, , S. W. B. Harijono, , and S. Kato, 1994: Radiosonde observations of equatorial atmosphere dynamics over Indonesia: 2. Characteristics of gravity waves. J. Geophys. Res., 99, 10 50710 516, doi:10.1029/94JD00354.

    • Search Google Scholar
    • Export Citation
  • Turner, J., , S. N. Chenoli, , A. A. Samah, , G. Marhsall, , T. Phillips, , and A. Orr, 2009: Strong wind events in the Antarctic. J. Geophys. Res., 114, D18103, doi:10.1029/2008JD011642.

    • Search Google Scholar
    • Export Citation
  • Valkonen, T., , T. Vihma, , S. Kirkwood, , and M. Johansson, 2010: Fine-scale model simulation of gravity waves generated by Basen nunatak in Antarctica. Tellus, 62A, 319332, doi:10.1111/j.1600-0870.2010.00443.x.

    • Search Google Scholar
    • Export Citation
  • Vincent, R. A., , and S. D. Eckermann, 1990: VHF radar observations of mesoscale motions in the troposphere: Evidence for gravity wave Doppler shifting. Radio Sci., 25, 10191037, doi:10.1029/RS025i005p01019.

    • Search Google Scholar
    • Export Citation
  • Vincent, R. A., , P. T. May, , W. K. Hocking, , W. G. Elford, , B. H. Candy, , and B. H. Briggs, 1987: First results with the Adelaide VHF radar: Spaced antenna studies of tropospheric winds. J. Atmos. Terr. Phys., 49, 353366, doi:10.1016/0021-9169(87)90030-4.

    • Search Google Scholar
    • Export Citation
  • Vincent, R. A., , A. MacKinnon, , I. M. Reid, , and M. J. Alexander, 2004: VHF profiler observations of winds and waves in the troposphere during the Darwin Area Wave Experiment (DAWEX). J. Geophys. Res., 109, D20S02, doi:10.1029/2004JD004714.

    • Search Google Scholar
    • Export Citation
  • Vincent, R. A., , A. Hertzog, , G. Boccara, , and F. Vial, 2007: Quasi-Lagrangian superpressure balloon measurements of gravity-wave momentum fluxes in the polar stratosphere of both hemispheres. Geophys. Res. Lett., 34, L19804, doi:10.1029/2007GL031072.

    • Search Google Scholar
    • Export Citation
  • Vosper, S. B., , and R. M. Worthington, 2002: VHF radar measurements and model simulations of mountain waves over Wales. Quart. J. Roy. Meteor. Soc., 128, 185204, doi:10.1256/00359000260498851.

    • Search Google Scholar
    • Export Citation
  • Watanabe, S., , K. Sato, , and M. Takahashi, 2006: A general circulation model study of the orographic gravity waves over Antarctica excited by katabatic winds. J. Geophys. Res., 111, D18104, doi:10.1029/2005JD006851.

    • Search Google Scholar
    • Export Citation
  • Yoshiki, M., , and K. Sato, 2000: A statistical study of gravity waves in the polar regions based on operational radiosonde data. J. Geophys. Res., 105, 17 99518 011, doi:10.1029/2000JD900204.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 37 37 7
PDF Downloads 27 27 5

The Seasonal Cycle of Lower-Tropospheric Gravity Wave Activity at Davis, Antarctica (69°S, 78°E)

View More View Less
  • 1 Australian Antarctic Division, Hobart, Tasmania, Australia
© Get Permissions
Restricted access

Abstract

A VHF wind-profiling radar located at Davis in coastal East Antarctica (69°S, 78°E) collected data from September 2009 to August 2011 in the lower troposphere. Gravity wave activity is quantified using the radar’s wind velocity variances. ERA-Interim and Antarctic Mesoscale Prediction System (AMPS) forecast output are used to understand the gravity wave activity in the context of the synoptic-scale meteorology and to identify the likely source of the observed gravity waves. The seasonal cycle of lower-tropospheric gravity wave activity (2.0–3.2-km altitude) obtained from the radar data for waves with ground-based periods of 16 min–12.8 h reveals a maximum in winter and a minimum in summer. The largest gravity wave activity corresponds in time to the presence of a surface depression centered north of Davis that directs strong northeasterly winds along the Antarctic coastline. Case studies indicate that these winds interact with an ice ridgeline located around 60 km northeast and upwind of Davis. This interaction between synoptic northeasterly winds and the ridgeline results in the formation of orographic gravity waves, which are observed in the Davis radar data as large wind velocity perturbations.

Corresponding author address: Simon Alexander, Australian Antarctic Division, 203 Channel Highway, Kingston TAS 7050, Australia. E-mail: simon.alexander@aad.gov.au

Abstract

A VHF wind-profiling radar located at Davis in coastal East Antarctica (69°S, 78°E) collected data from September 2009 to August 2011 in the lower troposphere. Gravity wave activity is quantified using the radar’s wind velocity variances. ERA-Interim and Antarctic Mesoscale Prediction System (AMPS) forecast output are used to understand the gravity wave activity in the context of the synoptic-scale meteorology and to identify the likely source of the observed gravity waves. The seasonal cycle of lower-tropospheric gravity wave activity (2.0–3.2-km altitude) obtained from the radar data for waves with ground-based periods of 16 min–12.8 h reveals a maximum in winter and a minimum in summer. The largest gravity wave activity corresponds in time to the presence of a surface depression centered north of Davis that directs strong northeasterly winds along the Antarctic coastline. Case studies indicate that these winds interact with an ice ridgeline located around 60 km northeast and upwind of Davis. This interaction between synoptic northeasterly winds and the ridgeline results in the formation of orographic gravity waves, which are observed in the Davis radar data as large wind velocity perturbations.

Corresponding author address: Simon Alexander, Australian Antarctic Division, 203 Channel Highway, Kingston TAS 7050, Australia. E-mail: simon.alexander@aad.gov.au
Save