Fitting and Analyzing LES Using Multiple Trivariate Gaussians

Grant J. Firl Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Grant J. Firl in
Current site
Google Scholar
PubMed
Close
and
David A. Randall Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by David A. Randall in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Assumed-PDF methods for the parameterization of subgrid-scale processes in atmospheric models provide many benefits. Many currently used assumed-PDF schemes reconcile the high number of required PDF parameters with the relative paucity of input moments by employing simplifying assumptions that are difficult to test. This paper explores the possibility of constructing a trivariate double-Gaussian PDF from the first three orders of moments without simplifying assumptions and proves that no unique solution exists. In an effort to provide a path for future improvement of current assumed-PDF schemes, the expectation maximization (EM) algorithm for Gaussian mixture models is used with LES output of shallow cumulus, stratocumulus, and deep convection cases to determine “best fit” PDFs using from one through four Gaussian clusters. The EM PDFs are evaluated using PDF-diagnosed higher-order moments, PDF-diagnosed cloud statistics, and the Akaike information criterion. It was found that two Gaussian clusters were almost always adequate to represent both higher-order moments and cloud statistics like cloud fraction, water content, and vertical fluxes of cloud water and buoyancy in layered clouds such as stratocumulus and deep convective anvils. However, higher-order moments and higher-order cloud statistics were only properly represented when three or four Gaussians were used in the upper regions of shallow cumulus layers and throughout the active portion of deep convection. Evidence is also provided that several common assumptions employed to diagnose trivariate double-Gaussian PDFs from a minimum number of input moments are weak.

Corresponding author address: Grant J. Firl, Department of Atmospheric Science, Colorado State University, 1371 Campus Delivery, Fort Collins, CO 80523. E-mail: grant@atmos.colostate.edu

Abstract

Assumed-PDF methods for the parameterization of subgrid-scale processes in atmospheric models provide many benefits. Many currently used assumed-PDF schemes reconcile the high number of required PDF parameters with the relative paucity of input moments by employing simplifying assumptions that are difficult to test. This paper explores the possibility of constructing a trivariate double-Gaussian PDF from the first three orders of moments without simplifying assumptions and proves that no unique solution exists. In an effort to provide a path for future improvement of current assumed-PDF schemes, the expectation maximization (EM) algorithm for Gaussian mixture models is used with LES output of shallow cumulus, stratocumulus, and deep convection cases to determine “best fit” PDFs using from one through four Gaussian clusters. The EM PDFs are evaluated using PDF-diagnosed higher-order moments, PDF-diagnosed cloud statistics, and the Akaike information criterion. It was found that two Gaussian clusters were almost always adequate to represent both higher-order moments and cloud statistics like cloud fraction, water content, and vertical fluxes of cloud water and buoyancy in layered clouds such as stratocumulus and deep convective anvils. However, higher-order moments and higher-order cloud statistics were only properly represented when three or four Gaussians were used in the upper regions of shallow cumulus layers and throughout the active portion of deep convection. Evidence is also provided that several common assumptions employed to diagnose trivariate double-Gaussian PDFs from a minimum number of input moments are weak.

Corresponding author address: Grant J. Firl, Department of Atmospheric Science, Colorado State University, 1371 Campus Delivery, Fort Collins, CO 80523. E-mail: grant@atmos.colostate.edu
Save
  • Ackerman, A. S., and Coauthors, 2009: Large-eddy simulations of a drizzling, stratocumulus-topped marine boundary layer. Mon. Wea. Rev., 137, 10831110, doi:10.1175/2008MWR2582.1.

    • Search Google Scholar
    • Export Citation
  • Bogenschutz, P. A., S. K. Krueger, and M. Khairoutdinov, 2010: Assumed probability density functions for shallow and deep convection. J. Adv. Model. Earth Syst., 2, 10, doi:10.3894/JAMES.2010.2.10.

    • Search Google Scholar
    • Export Citation
  • Bogenschutz, P. A., A. Gettelman, H. Morrison, V. E. Larson, D. P. Schanen, N. R. Meyer, and C. Craig, 2012: Unified parameterization of the planetary boundary layer and shallow convection with a higher-order turbulence closure in the community atmosphere model: Single-column experiments. Geosci. Model Dev., 5, 14071423, doi:10.5194/gmd-5-1407-2012.

    • Search Google Scholar
    • Export Citation
  • Bougeault, P., 1981: Modeling the trade-wind cumulus boundary-layer. Part 1: Testing the ensemble cloud relations against numerical data. J. Atmos. Sci., 38, 24142428, doi:10.1175/1520-0469(1981)038<2414:MTTWCB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bougeault, P., 1982: Cloud-ensemble relations based on the gamma probability distribution for the higher-order models of the planetary boundary layer. J. Atmos. Sci., 39, 26912700, doi:10.1175/1520-0469(1982)039<2691:CERBOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Burnham, K. P., and D. R. Anderson, 2004: Multimodel inference: Understanding AIC and BIC in model selection. Sociol. Methods Res.,33, 261–304, doi:10.1177/0049124104268644.

  • Cheng, A., and K.-M. Xu, 2008: Simulation of boundary-layer cumulus and stratocumulus clouds using a cloud-resolving model with low- and third-order turbulence closures. J. Meteor. Soc. Japan, 86A, 6786, doi:10.2151/jmsj.86A.67.

    • Search Google Scholar
    • Export Citation
  • Dazlich, D. A., S. K. Krueger, C. L. Moeng, M. Khairoutdinov, R. Pincus, P. N. Blossey, and J. J. Helly, 2013: A GigaLES of the TWP-ICE field campaign. 2013 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract A31A-0002.

  • Dempster, A., N. Laird, and D. Rubin, 1977: Maximum likelihood from incomplete data via EM algorithm. J. Roy. Stat. Soc.,39B, 138.

  • Firl, G., 2013: A study of low cloud climate feedbacks using a generalized higher-order closure subgrid model. Ph.D. thesis, Colorado State University, 253 pp.

  • Fridlind, A. M., and Coauthors, 2012: A comparison of TWP-ICE observational data with cloud-resolving model results. J. Geophys. Res.,117, D05204, doi:10.1029/2011JD016595.

  • Huang, Y., K. Englehart, B. Hudgins, and A. Chan, 2005: A Gaussian mixture model based classification scheme for myoelectric control of powered upper limb prostheses. IEEE Trans. Biomed. Eng., 52, 18011811, doi:10.1109/TBME.2005.856295.

    • Search Google Scholar
    • Export Citation
  • Ingargiola, A., cited 2014: Mixture model fitting: An expectation maximization approach. [Available online at http://nbviewer.ipython.org/github/tritemio/notebooks/blob/master/Mixture_Model_Fitting.ipynb.]

  • Khairoutdinov, M., and D. Randall, 2003: Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60, 607625, doi:10.1175/1520-0469(2003)060<0607:CRMOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lappen, C., and D. Randall, 2001: Toward a unified parameterization of the boundary layer and moist convection. Part I: A new type of mass-flux model. J. Atmos. Sci., 58, 20212036, doi:10.1175/1520-0469(2001)058<2021:TAUPOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Larson, V., J. Golaz, and W. Cotton, 2002: Small-scale and mesoscale variability in cloudy boundary layers: Joint probability density functions. J. Atmos. Sci., 59, 35193539, doi:10.1175/1520-0469(2002)059<3519:SSAMVI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lewellen, W. S., and S. Yoh, 1993: Binormal model of ensemble partial cloudiness. J. Atmos. Sci., 50, 12281237, doi:10.1175/1520-0469(1993)050<1228:BMOEPC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McKenna, S., S. Gong, and Y. Raja, 1998: Modelling facial colour and identity with Gaussian mixtures. Pattern Recognit., 31, 18831892, doi:10.1016/S0031-3203(98)00066-1.

    • Search Google Scholar
    • Export Citation
  • McKenna, S., Y. Raja, and S. Gong, 1999: Tracking colour objects using adaptive mixture models. Image Vision Comput., 17, 225231, doi:10.1016/S0262-8856(98)00104-8.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., 1977: Gaussian cloud model relations. J. Atmos. Sci., 34, 356358, doi:10.1175/1520-0469(1977)034<0356:TGCMR>2.0.CO;2.

  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res.,102, 16 663–16 682, doi:10.1029/97JD00237.

  • Morrison, H., J. Curry, and V. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677, doi:10.1175/JAS3446.1.

    • Search Google Scholar
    • Export Citation
  • Pedregosa, F., and Coauthors, 2011: Scikit-learn: Machine learning in Python. J. Mach. Learn. Res., 12, 28252830.

  • Randall, D., 1987: Turbulent fluxes of liquid water and buoyancy in partly cloudy layers. J. Atmos. Sci., 44, 850858, doi:10.1175/1520-0469(1987)044<0850:TFOLWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Randall, D., Q. Shao, and C. Moeng, 1992: A second-order bulk boundary-layer model. J. Atmos. Sci., 49, 19031923, doi:10.1175/1520-0469(1992)049<1903:ASOBBL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Redner, R., and H. Walker, 1984: Mixture densities, maximum-likelihood and the EM algorithm. SIAM Rev., 26, 195237, doi:10.1137/1026034.

    • Search Google Scholar
    • Export Citation
  • Reynolds, D., and R. Rose, 1995: Robust text-independent speaker identification using Gaussian mixture speaker models. IEEE Trans. Speech Audio Process., 3, 7283, doi:10.1109/89.365379.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and Coauthors, 2003: A large eddy simulation intercomparison study of shallow cumulus convection. J. Atmos. Sci., 60, 12011219, doi:10.1175/1520-0469(2003)60<1201:ALESIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., and W. W. Grabowski, 1990: The multidimensional positive definite advection transport algorithm: Nonoscillatory option. J. Comput. Phys.,86, 355–375, doi:10.1016/0021-9991(90)90105-A.

  • Sommeria, G., and J. W. Deardorff, 1977: Subgrid-scale condensation in models of nonprecipitating clouds. J. Atmos. Sci., 34, 344355, doi:10.1175/1520-0469(1977)034<0344:SSCIMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Taylor, K., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res.,106, 7183–7192, doi:10.1029/2000JD900719.

  • Tomasi, C., cited 2014: Estimating Gaussian mixture densities with EM—A tutorial. [Available online at https://www.cs.duke.edu/courses/spring04/cps196.1/handouts/EM/tomasiEM.pdf.]

  • Tompkins, A., 2002: A prognostic parameterization for the subgrid-scale variability of water vapor and clouds in large-scale models and its use to diagnose cloud cover. J. Atmos. Sci., 59, 19171942, doi:10.1175/1520-0469(2002)059<1917:APPFTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yamaguchi, T., D. A. Randall, and M. F. Khairoutdinov, 2011: Cloud modeling tests of the ULTIMATE–MACHO scalar advection scheme. Mon. Wea. Rev.,139, 3248–3264, doi:10.1175/MWR-D-10-05044.1.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 528 196 123
PDF Downloads 222 54 8