Impact of the 2011 Southern U.S. Drought on Ground-Level Fine Aerosol Concentration in Summertime

Yuxuan Wang Department of Marine Science, Texas A&M University, Galveston, Texas, and Ministry of Education Key Laboratory for Earth System Modeling, Center for Earth System Science, Tsinghua University, Beijing, China, and Department of Atmospheric Science, Texas A&M University, College Station, Texas

Search for other papers by Yuxuan Wang in
Current site
Google Scholar
PubMed
Close
,
Yuanyu Xie Ministry of Education Key Laboratory for Earth System Modeling, Center for Earth System Science, Tsinghua University, Beijing, China

Search for other papers by Yuanyu Xie in
Current site
Google Scholar
PubMed
Close
,
Libao Cai Ministry of Education Key Laboratory for Earth System Modeling, Center for Earth System Science, Tsinghua University, Beijing, China

Search for other papers by Libao Cai in
Current site
Google Scholar
PubMed
Close
,
Wenhao Dong Ministry of Education Key Laboratory for Earth System Modeling, Center for Earth System Science, Tsinghua University, Beijing, China

Search for other papers by Wenhao Dong in
Current site
Google Scholar
PubMed
Close
,
Qianqian Zhang Ministry of Education Key Laboratory for Earth System Modeling, Center for Earth System Science, Tsinghua University, Beijing, China

Search for other papers by Qianqian Zhang in
Current site
Google Scholar
PubMed
Close
, and
Lin Zhang Laboratory for Climate and Ocean-Atmosphere Sciences, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

Search for other papers by Lin Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study investigates the impacts of the 2011 severe drought in the southern United States on ground-level fine aerosol (PM2.5) concentrations in the summer. The changes in surface concentrations and planetary boundary layer (PBL) budget of PM2.5 between June 2010 (near-normal rainfall) and June 2011 (severe drought) are quantified using surface observations and the GEOS-Chem model. Observations show an average enhancement of 26% (p < 10−4) in total PM2.5 over the southern U.S. (SUS) region during the drought, which is largely attributed to a ~120% increase in organic carbon (OC). Over Texas (TX) under extreme drought conditions, surface PM2.5 shows a mean decrease of 10.7% (p < 0.15), which is mainly driven by a decrease of 26% (p < 0.03) in sulfate. Model simulations reproduce the observed relative changes in total PM2.5, OC, and sulfate during the drought. The model correctly identifies OC as the major contributor to the overall PM2.5 increase over SUS and sulfate as the key driver of the PM2.5 decrease over TX. Budget analysis suggests that increased OC emissions from wildfires (+58 kt C month−1), enhanced SOA production (+1.1 kt C month−1), and transboundary inflow from Mexico (+8.6 kt C month−1) are major contributors to the increase in atmospheric OC contents over SUS. Over TX, a 70% decrease of aqueous-phase oxidation of sulfate, driven by decreasing low clouds, outweighs the combined effects of reduced wet deposition and decreased outflow as the key driver of sulfate decrease both at the surface and within the PBL.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAS-D-14-0197.s1.

Corresponding author address: Yuxuan Wang, 200 Seawolf Parkway, P.O. Box 1675, Galveston, TX 77553. E-mail: wangyx@tamug.edu

Abstract

This study investigates the impacts of the 2011 severe drought in the southern United States on ground-level fine aerosol (PM2.5) concentrations in the summer. The changes in surface concentrations and planetary boundary layer (PBL) budget of PM2.5 between June 2010 (near-normal rainfall) and June 2011 (severe drought) are quantified using surface observations and the GEOS-Chem model. Observations show an average enhancement of 26% (p < 10−4) in total PM2.5 over the southern U.S. (SUS) region during the drought, which is largely attributed to a ~120% increase in organic carbon (OC). Over Texas (TX) under extreme drought conditions, surface PM2.5 shows a mean decrease of 10.7% (p < 0.15), which is mainly driven by a decrease of 26% (p < 0.03) in sulfate. Model simulations reproduce the observed relative changes in total PM2.5, OC, and sulfate during the drought. The model correctly identifies OC as the major contributor to the overall PM2.5 increase over SUS and sulfate as the key driver of the PM2.5 decrease over TX. Budget analysis suggests that increased OC emissions from wildfires (+58 kt C month−1), enhanced SOA production (+1.1 kt C month−1), and transboundary inflow from Mexico (+8.6 kt C month−1) are major contributors to the increase in atmospheric OC contents over SUS. Over TX, a 70% decrease of aqueous-phase oxidation of sulfate, driven by decreasing low clouds, outweighs the combined effects of reduced wet deposition and decreased outflow as the key driver of sulfate decrease both at the surface and within the PBL.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAS-D-14-0197.s1.

Corresponding author address: Yuxuan Wang, 200 Seawolf Parkway, P.O. Box 1675, Galveston, TX 77553. E-mail: wangyx@tamug.edu

Supplementary Materials

    • Supplemental Materials (DOCX 111.00 KB)
Save
  • Allen, C. D., and Coauthors, 2010: A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage.,259, 660–684, doi:10.1016/j.foreco.2009.09.001.

  • Bey, I., and Coauthors, 2001: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation. J. Geophys. Res., 106, 23 07323 095, doi:10.1029/2001JD000807.

    • Search Google Scholar
    • Export Citation
  • Chen, D., Y. Wang, M. B. McElroy, K. He, R. M. Yantosca, and P. L. Sager, 2009: Regional CO pollution and export in China simulated by the high-resolution nested-grid GEOS-Chem model. Atmos. Chem. Phys., 9, 38253839, doi:10.5194/acp-9-3825-2009.

    • Search Google Scholar
    • Export Citation
  • Combs, S., 2012: The impact of the 2011 drought and beyond. Texas Comptroller of Public Accounts Data Division Services Publ. 96-1704, 16 pp. [Available online at http://www.window.state.tx.us/specialrpt/drought/pdf/96-1704-Drought.pdf.]

  • Cooke, W., C. Liousse, H. Cachier, and J. Feichter, 1999: Construction of a 1° × 1° fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM4 model. J. Geophys. Res., 104, 22 13722 162, doi:10.1029/1999JD900187.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2013: Increasing drought under global warming in observations and models. Nat. Climate Change, 3, 5258, doi:10.1038/nclimate1633.

    • Search Google Scholar
    • Export Citation
  • Dai, A., F. Giorgi, and K. E. Trenberth, 1999: Observed and model-simulated diurnal cycles of precipitation over the contiguous United States. J. Geophys. Res., 104, 63776402, doi:10.1029/98JD02720.

    • Search Google Scholar
    • Export Citation
  • Dawson, J. P., P. J. Adams, and S. N. Pandis, 2007: Sensitivity of PM2.5 to climate in the Eastern US: A modeling case study. Atmos. Chem. Phys., 7, 42954309, doi:10.5194/acp-7-4295-2007.

    • Search Google Scholar
    • Export Citation
  • Evans, M. J., and D. J. Jacob, 2005: Impact of new laboratory studies of N2O5 hydrolysis on global model budgets of tropospheric nitrogen oxides, ozone, and OH. Geophys. Res. Lett., 32, L09813, doi:10.1029/2005GL022469.

    • Search Google Scholar
    • Export Citation
  • Fairlie, T. D., D. J. Jacob, and R. J. Park, 2007: The impact of transpacific transport of mineral dust in the United States. Atmos. Environ., 41, 12511266, doi:10.1016/j.atmosenv.2006.09.048.

    • Search Google Scholar
    • Export Citation
  • Flanagan, J. B., R. K. M. Jayanty, E. E. Rickman Jr., and M. R. Peterson, 2006: PM2.5 Speciation Trends Network: Evaluation of whole-system uncertainties using data from sites with collocated samplers. J. Air Waste Manage. Assoc., 56, 492499, doi:10.1080/10473289.2006.10464516.

    • Search Google Scholar
    • Export Citation
  • Fountoukis, C., and A. Nenes, 2007: ISORROPIA II: A computationally efficient thermodynamic equilibrium model for K+–Ca2+–Mg2+–NH4 +–Na+–SO4 2−–NO3 –Cl–H2O aerosols. Atmos. Chem. Phys., 7, 46394659, doi:10.5194/acp-7-4639-2007.

    • Search Google Scholar
    • Export Citation
  • Giglio, L., J. T. Randerson, G. R. d. Werf, P. S. Kasibhatla, G. J. Collatz, D. C. Morton, and R. S. DeFries, 2010: Assessing variability and long-term trends in burned area by merging multiple satellite fire products. Biogeosciences, 7, 11711186, doi:10.5194/bg-7-1171-2010.

    • Search Google Scholar
    • Export Citation
  • Guenther, A., T. Karl, P. Harley, C. Wiedinmyer, P. I. Palmer, and C. Geron, 2006: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys., 6, 31813210, doi:10.5194/acp-6-3181-2006.

    • Search Google Scholar
    • Export Citation
  • Heald, C. L., and Coauthors, 2012: Atmospheric ammonia and particulate inorganic nitrogen over the United States. Atmos. Chem. Phys.,12, 10 295–10 312, doi:10.5194/acp-12-10295-2012.

  • Hering, S. V., and G. R. Cass, 1999: The magnitude of bias in the measurement of PM2.5 arising from volatilization of particulate nitrate from Teflon filters. J. Air Waste Manage. Assoc., 49, 725733, doi:10.1080/10473289.1999.10463843.

    • Search Google Scholar
    • Export Citation
  • Hyslop, N., 2008: An evaluation of Interagency Monitoring of Protected Visual Environments (IMPROVE) collocated precision and uncertainty estimates. Atmos. Environ., 42, 26912705, doi:10.1016/j.atmosenv.2007.06.053.

    • Search Google Scholar
    • Export Citation
  • Johnson, M. S., N. Meskhidze, and V. Praju Kiliyanpilakkil, 2012: A global comparison of GEOS-Chem-predicted and remotely-sensed mineral dust aerosol optical depth and extinction profiles. J. Adv. Model. Earth Syst., 4, M07001, doi:10.1029/2011MS000109.

    • Search Google Scholar
    • Export Citation
  • Kerr, E., 2012: Brutal drought depresses agriculture, thwarting US and Texas economies. Southwest Econ., Q4, 1013.

  • Liao, H., D. K. Henze, J. H. Seinfeld, S. Wu, and L. J. Mickley, 2007: Biogenic secondary organic aerosol over the United States: Comparison of climatological simulations with observations. J. Geophys. Res., 112, D06201, doi:10.1029/2006JD007813.

    • Search Google Scholar
    • Export Citation
  • Liu, A. Z., M. Ting, and H. Wang, 1998: Maintenance of circulation anomalies during the 1988 drought and 1993 floods over the United States. J. Atmos. Sci., 55, 28102832, doi:10.1175/1520-0469(1998)055<2810:MOCADT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, H., D. J. Jacob, I. Bey, and R. M. Yantosca, 2001: Constraints from 210Pb and 7Be on wet deposition and transport in a global three-dimensional chemical tracer model driven by assimilated meteorological fields. J. Geophys. Res., 106, 12 10912 128, doi:10.1029/2000JD900839.

    • Search Google Scholar
    • Export Citation
  • Long, D., B. R. Scanlon, L. Longuevergne, A. Y. Sun, D. N. Fernando, and H. Save, 2013: GRACE satellite monitoring of large depletion in water storage in response to the 2011 drought in Texas. Geophys. Res. Lett., 40, 33953401, doi:10.1002/grl.50655.

    • Search Google Scholar
    • Export Citation
  • Malm, W. C., J. F. Sisler, D. Huffman, R. A. Eldred, and T. A. Cahill, 1994: Spatial and seasonal trends in particle concentration and optical extinction in the United States. J. Geophys. Res., 99, 13471370, doi:10.1029/93JD02916.

    • Search Google Scholar
    • Export Citation
  • Marlier, M. E., R. S. DeFries, A. Voulgarakis, P. L. Kinney, J. T. Randerson, D. T. Shindell, Y. Chen, and G. Faluvegi, 2013: El Niño and health risks from landscape fire emissions in southeast Asia. Nat. Climate Change, 3, 131136, doi:10.1038/nclimate1658.

    • Search Google Scholar
    • Export Citation
  • Middleton, N. J., 1985: Effect of drought on dust production in the Sahel. Nature, 316, 431435, doi:10.1038/316431a0.

  • Mu, M., and Coauthors, 2011: Daily and 3-hourly variability in global fire emissions and consequences for atmospheric model predictions of carbon monoxide. J. Geophys. Res., 116, D24303, doi:10.1029/2011JD016245.

    • Search Google Scholar
    • Export Citation
  • NCDC, cited 2014: North American Drought Monitor (NADM) maps. [Available online at http://www.ncdc.noaa.gov/temp-and-precip/drought/nadm/nadm-maps.php?lang=en&year=2011&month=6.]

  • Nielsen-Gammon, J. W., 2012: The 2011 Texas drought. Tex. Water J., 3, 5995.

  • Park, R. J., D. J. Jacob, B. D. Field, R. M. Yantosca, and M. Chin, 2004: Natural and transboundary pollution influences on sulfate-nitrate-ammonium aerosols in the United States: Implications for policy. J. Geophys. Res., 109, D15204, doi:10.1029/2003JD004473.

    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., and R. T. Nees, 1986: Impact of the North African drought and El Niño on mineral dust in the Barbados trade winds. Nature, 320, 735738, doi:10.1038/320735a0.

    • Search Google Scholar
    • Export Citation
  • Räsänen, J. V., P. Yli-Pirilä, T. Holopainen, J. Joutsensaari, P. Pasanen, and M. Kivimäenpää, 2012: Soil drought increases atmospheric fine particle capture efficiency of Norway spruce. Boreal Environ. Res., 17, 2130.

    • Search Google Scholar
    • Export Citation
  • Ridley, D. A., C. L. Heald, and B. Ford, 2012: North African dust export and deposition: A satellite and model perspective. J. Geophys. Res., 117, D02202, doi:10.1029/2011JD016794.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Romm, J., 2011: Desertification: The next dust bowl. Nature, 478, 450451, doi:10.1038/478450a.

  • Ruminski, M. G., M. D. Fromm, and E. Ramirez, 2011: The Arizona Wallow wildfire: Monitoring its progress, extreme behavior and long range smoke transport from multiple satellite platforms. 2011 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract NH52A-06.

  • Seager, R., L. Goddard, J. Nakamura, N. Henderson, and D. E. Lee, 2014: Dynamical causes of the 2010/11 Texas–northern Mexico drought. J. Hydrometeor., 15, 3968, doi:10.1175/JHM-D-13-024.1.

    • Search Google Scholar
    • Export Citation
  • Seinfeld, J. H., and S. N. Pandis, 2012: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. John Wiley & Sons, 1232 pp.

  • Smith, L. T., L. E. O. C. Aragão, C. E. Sabel, and T. Nakaya, 2014: Drought impacts on children’s respiratory health in the Brazilian Amazon. Sci. Rep.,4, 3726, doi:10.1038/srep03726.

  • Svoboda, M., and Coauthors, 2002: The Drought Monitor. Bull. Amer. Meteor. Soc., 83, 11811190, doi:10.1175/1520-0477(2002)083<1181:TDM>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tosca, M. G., J. T. Randerson, C. S. Zender, M. G. Flanner, and P. J. Rasch, 2010: Do biomass burning aerosols intensify drought in equatorial Asia during El Niño? Atmos. Chem. Phys., 10, 35153528, doi:10.5194/acp-10-3515-2010.

    • Search Google Scholar
    • Export Citation
  • van Donkelaar, A., and Coauthors, 2008: Analysis of aircraft and satellite measurements from the Intercontinental Chemical Transport Experiment (INTEX-B) to quantify long-range transport of East Asian sulfur to Canada. Atmos. Chem. Phys., 8, 29993014, doi:10.5194/acp-8-2999-2008.

    • Search Google Scholar
    • Export Citation
  • Veraverbeke, S., and S. J. Hook, 2013: Evaluating spectral indices and spectral mixture analysis for assessing fire severity, combustion completeness and carbon emissions. Int. J. Wildland Fire, 22, 707720, doi:10.1071/WF12168.

    • Search Google Scholar
    • Export Citation
  • Vijayakumar, K., P. C. S. Devara, and C. P. Simha, 2012: Aerosol features during drought and normal monsoon years: A study undertaken with multi-platform measurements over a tropical urban site. Aerosol Air Qual. Res., 12, 14441458, doi:10.4209/aaqr.2012.01.0005.

    • Search Google Scholar
    • Export Citation
  • Wang, J., S. A. Christopher, U. S. Nair, J. S. Reid, E. M. Prins, J. Szykman, and J. L. Hand, 2006: Mesoscale modeling of Central American smoke transport to the United States: 1. “Top-down” assessment of emission strength and diurnal variation impacts. J. Geophys. Res., 11, D05S17, doi:10.1029/2005JD006416.

    • Search Google Scholar
    • Export Citation
  • Wang, Y. X., M. B. McElroy, D. J. Jacob, and R. M. Yantosca, 2004: A nested grid formulation for chemical transport over Asia: Applications to CO. J. Geophys. Res., 109, D22307, doi:10.1029/2004JD005237.

    • Search Google Scholar
    • Export Citation
  • Weinhold, B., 2011: Fields and forests in flames: Vegetation smoke and human health. Environ. Health Perspect., 119, A386A393, doi:10.1289/ehp.119-a386.

    • Search Google Scholar
    • Export Citation
  • Welch, B. L., 1938: The significance of the difference between two means when the population variances are unequal. Biometrika, 29,350362, doi:10.1093/biomet/29.3-4.350.

    • Search Google Scholar
    • Export Citation
  • Wesely, M. L., 1989: Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models. Atmos. Res., 23, 12931304.

    • Search Google Scholar
    • Export Citation
  • Winguth, A. M. E., and B. Kelp, 2013: The urban heat island of the north-central Texas region and its relation to the 2011 severe Texas drought. J. Appl. Meteor. Climatol., 52, 24182433, doi:10.1175/JAMC-D-12-0195.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., and Coauthors, 2012: Nitrogen deposition to the United States: Distribution, sources, and processes. Atmos. Chem. Phys. Discuss., 12, 241282, doi:10.5194/acpd-12-241-2012.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., J. F. Kok, D. K. Henze, Q. Li, and C. Zhao, 2013: Improving simulations of fine dust surface concentrations over the western United States by optimizing the particle size distribution. Geophys. Res. Lett., 40, 32703275, doi:10.1002/grl.50591.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3694 3183 908
PDF Downloads 468 141 12