• Abalos, M., , W. J. Randel, , and E. Serrano, 2012: Variability in upwelling across the tropical tropopause and correlations with tracers in the lower stratosphere. Atmos. Chem. Phys., 12, 11 50511 517, doi:10.5194/acp-12-11505-2012.

    • Search Google Scholar
    • Export Citation
  • Abalos, M., , W. J. Randel, , D. E. Kinnison, , and E. Serrano, 2013: Quantifying tracer transport in the tropical lower stratosphere using WACCM. Atmos. Chem. Phys., 13, 10 59110 607, doi:10.5194/acp-13-10591-2013.

    • Search Google Scholar
    • Export Citation
  • Abalos, M., , W. J. Randel, , and E. Serrano, 2014: Dynamical forcing of subseasonal variability in the tropical Brewer–Dobson circulation. J. Atmos. Sci., 71, 3439–3453, doi:10.1175/JAS-D-13-0366.1.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., , J. R. Holton, , and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Anthes, R. A., and et al. , 2008: The COSMIC/FORMOSAT-3 mission: Early results. Bull. Amer. Meteor. Soc., 89, 313333, doi:10.1175/BAMS-89-3-313.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and et al. , 2001: The quasi-biennial oscillation. Rev. Geophys., 39, 179229, doi:10.1029/1999RG000073.

  • Birner, T., , and H. Bönisch, 2011: Residual circulation trajectories and transit times into the extratropical lowermost stratosphere. Atmos. Chem. Phys., 11, 817827, doi:10.5194/acp-11-817-2011.

    • Search Google Scholar
    • Export Citation
  • Calvo, N., , R. R. Garcia, , W. J. Randel, , and D. Marsh, 2010: Dynamical mechanism for the increase in tropical upwelling in the lowermost tropical stratosphere during warm ENSO events. J. Atmos. Sci., 67, 23312340, doi:10.1175/2010JAS3433.1.

    • Search Google Scholar
    • Export Citation
  • Calvo Fernández, N., , R. R. Garcia, , R. G. Herrera, , D. G. Puyol, , L. G. Presa, , E. H. Martin, , and P. R. Rodiguez, 2004: Analysis of the ENSO signal in tropospheric and stratospheric temperatures observed by MSU, 1979–2000. J. Climate, 17, 39343946, doi:10.1175/1520-0442(2004)017<3934:AOTESI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davis, S. M., , C. K. Liang, , and K. H. Rosenlof, 2013: Interannual variability of tropical tropopause layer clouds. Geophys. Res. Lett., 40, 28622866, doi:10.1002/grl.50512.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., , M. R. Schoeberl, , T. Wang, , S. M. Davis, , and K. H. Rosenlof, 2013: Stratospheric water vapor feedback. Proc. Natl. Acad. Sci. USA, 110, 18 08718 091, doi:10.1073/pnas.1310344110.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., , C.-P. F. Hsu, , and M. E. McIntyre, 1981: Some Eulerian and Lagrangian diagnostics for a model stratospheric warming. J. Atmos. Sci., 38, 819843, doi:10.1175/1520-0469(1981)038<0819:SEALDF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., , P. H. Haynes, , and P. M. Forster, 2011: The annual cycle in lower stratospheric temperatures revisited. Atmos. Chem. Phys., 11, 37013711, doi:10.5194/acp-11-3701-2011.

    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., and et al. , 2013: The relation between atmospheric humidity and temperature trends for stratospheric water. J. Geophys. Res. Atmos., 118, 10521074, doi:10.1002/jgrd.50157.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., 1987: On the mean meridional circulation of the middle atmosphere. J. Atmos. Sci., 44, 35993609, doi:10.1175/1520-0469(1987)044<3599:OTMMCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gómez-Escolar, M., , N. Calvo, , D. Barriopedro, , and S. Fueglistaler, 2014: Tropical response to stratospheric sudden warmings and its modulation by the QBO. J. Geophys. Res. Atmos., 119, 73827395, doi:10.1002/2013JD020560.

    • Search Google Scholar
    • Export Citation
  • Grise, K. M., , and D. W. J. Thompson, 2012: Equatorial planetary waves and their signature in atmospheric variability. J. Atmos. Sci., 69, 857874, doi:10.1175/JAS-D-11-0123.1.

    • Search Google Scholar
    • Export Citation
  • Grise, K. M., , and D. W. J. Thompson, 2013: On the signatures of equatorial and extratropical wave forcing in tropical tropopause layer temperatures. J. Atmos. Sci., 70, 10841102, doi:10.1175/JAS-D-12-0163.1.

    • Search Google Scholar
    • Export Citation
  • Grise, K. M., , D. W. J. Thompson, , and T. Birner, 2010: A global survey of static stability in the stratosphere and upper troposphere. J. Climate, 23, 22752292, doi:10.1175/2009JCLI3369.1.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. E., , J. R. Holton, , and Q. Fu, 2001: The heat balance of the tropical tropopause, cirrus and stratospheric dehydration. Geophys. Res. Lett., 28, 19691972, doi:10.1029/2000GL012833.

    • Search Google Scholar
    • Export Citation
  • Hitchcock, P., , T. G. Shepherd, , and S. Yoden, 2010: On the approximation of local and linear radiative damping in the middle atmosphere. J. Atmos. Sci., 67, 20702085, doi:10.1175/2009JAS3286.1.

    • Search Google Scholar
    • Export Citation
  • Jenkins, G. M., , and D. G. Watts, 1968: Spectral Analysis and Its Applications. Holden-Day, 525 pp.

  • Kim, J., , and S.-W. Son, 2012: Tropical cold-point tropopause: Climatology, seasonal cycle, and intraseasonal variability derived from COSMIC GPS radio occultation measurements. J. Climate, 25, 53435360, doi:10.1175/JCLI-D-11-00554.1.

    • Search Google Scholar
    • Export Citation
  • Kim, J., , K. M. Grise, , and S.-W. Son, 2013: Thermal characteristics of the cold-point tropopause region in CMIP5 models. J. Geophys. Res. Atmos., 118, 88278841, doi:10.1002/jgrd.50649.

    • Search Google Scholar
    • Export Citation
  • Li, Y., , and D. W. J. Thompson, 2013: The signature of the stratospheric Brewer–Dobson circulation in tropospheric clouds. J. Geophys. Res. Atmos., 118, 34863494, doi:10.1002/jgrd.50339.

    • Search Google Scholar
    • Export Citation
  • Manney, G. L., and et al. , 2009: Aura Microwave Limb Sounder observations of dynamics and transport during the record-breaking 2009 Arctic stratospheric major warming. Geophys. Res. Lett., 36, L12815, doi:10.1029/2009GL038586.

    • Search Google Scholar
    • Export Citation
  • Manney, G. L., and et al. , 2011: Unprecedented Arctic ozone loss in 2011. Nature, 478, 469475, doi:10.1038/nature10556.

  • Mote, P. W., and et al. , 1996: An atmospheric tape recorder: The imprint of tropical tropopause temperatures on stratospheric water vapor. J. Geophys. Res., 101, 39894006, doi:10.1029/95JD03422.

    • Search Google Scholar
    • Export Citation
  • Munchak, L. A., , and L. L. Pan, 2014: Separation of the lapse rate and the cold point tropopauses in the tropics and the resulting impact on cloud top-tropopause relationships. J. Geophys. Res. Atmos., 119, 7963–7978, doi:10.1002/2013JD021189.

    • Search Google Scholar
    • Export Citation
  • Newman, P. A., , and E. R. Nash, 2005: The unusual Southern Hemisphere stratosphere winter of 2002. J. Atmos. Sci., 62, 614628, doi:10.1175/JAS-3323.1.

    • Search Google Scholar
    • Export Citation
  • Norton, W. A., 2006: Tropical wave driving of the annual cycle in tropical tropopause temperatures. Part II: Model results. J. Atmos. Sci., 63, 14201431, doi:10.1175/JAS3698.1.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 2002: Stratospheric transport. J. Meteor. Soc. Japan, 80, 793809.

  • Randel, W. J., 1993: Global variations of zonal mean ozone during stratospheric warming events. J. Atmos. Sci., 50, 33083321, doi:10.1175/1520-0469(1993)050<3308:GVOZMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., , and E. J. Jensen, 2013: Physical processes in the tropical tropopause layer and their role in a changing climate. Nat. Geosci., 6, 169176, doi:10.1038/ngeo1733.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., , R. R. Garcia, , and F. Wu, 2002: Time dependent upwelling in the tropical lower stratosphere estimated from the zonal-mean momentum budget. J. Atmos. Sci., 59, 21412152, doi:10.1175/1520-0469(2002)059<2141:TDUITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., , F. Wu, , and W. Rivera Rios, 2003: Thermal variability of the tropical tropopause region derived from GPS/MET observations. J. Geophys. Res., 108, 4024, doi:10.1029/2002JD002595.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., , R. R. Garcia, , N. Calvo, , and D. Marsh, 2009: ENSO influence on zonal mean temperature and ozone in the tropical lower stratosphere. Geophys. Res. Lett., 36, L15822, doi:10.1029/2009GL039343.

    • Search Google Scholar
    • Export Citation
  • Sato, K., , F. Hasegawa, , and I. Hirota, 1994: Short-period disturbances in the equatorial lower stratosphere. J. Meteor. Soc. Japan, 72, 859872.

    • Search Google Scholar
    • Export Citation
  • Scherllin-Pirscher, B., , C. Deser, , S.-P. Ho, , C. Chou, , W. Randel, , and Y.-H. Kuo, 2012: The vertical and spatial structure of ENSO in the upper troposphere and lower stratosphere from GPS radio occultation measurements. Geophys. Res. Lett., 39, L20801, doi:10.1029/2012GL053071.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., , R. J. Ross, , J. K. Angell, , and G. C. Reid, 2001: Climatological characteristics of the tropical tropopause as revealed by radiosondes. J. Geophys. Res., 106, 78577878, doi:10.1029/2000JD900837.

    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., , T. G. Shepherd, , and M. Sigmond, 2011: Dynamics of the lower stratospheric circulation response to ENSO. J. Atmos. Sci., 68, 25372566, doi:10.1175/JAS-D-11-05.1.

    • Search Google Scholar
    • Export Citation
  • Ueyama, R., , and M. J. Wallace, 2010: To what extent does high-latitude wave forcing drive tropical upwelling in the Brewer–Dobson circulation? J. Atmos. Sci., 67, 12321246, doi:10.1175/2009JAS3216.1.

    • Search Google Scholar
    • Export Citation
  • Ueyama, R., , E. P. Gerber, , J. M. Wallace, , and D. M. W. Frierson, 2013: The role of high-latitude waves in the intraseasonal to seasonal variability of tropical upwelling in the Brewer–Dobson circulation. J. Atmos. Sci., 70, 16311648, doi:10.1175/JAS-D-12-0174.1.

    • Search Google Scholar
    • Export Citation
  • Virts, K. S., , and J. M. Wallace, 2014: Observations of temperature, wind, cirrus, and trace gases in the tropical tropopause transition layer during the MJO. J. Atmos. Sci., 71, 11431157, doi:10.1175/JAS-D-13-0178.1.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., , R. L. Panetta, , and J. Estberg, 1993: Representation of the equatorial stratospheric quasi-biennial oscillation in EOF phase space. J. Atmos. Sci., 50, 17511762, doi:10.1175/1520-0469(1993)050<1751:ROTESQ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, J. S., , D. J. Seidel, , and M. Free, 2012: How well do we know recent climate trends at the tropical tropopause? J. Geophys. Res., 117, D09118, doi:10.1029/2012JD017444.

    • Search Google Scholar
    • Export Citation
  • Wickert, J., and et al. , 2001: Atmosphere sounding by GPS radio occultation: First results from CHAMP. Geophys. Res. Lett., 28, 32633266, doi:10.1029/2001GL013117.

    • Search Google Scholar
    • Export Citation
  • Yulaeva, E., , and J. M. Wallace, 1994: The signature of ENSO in global temperature fields derived from the Microwave Sounding Unit. J. Climate, 17,17191736, doi:10.1175/1520-0442(1994)007<1719:TSOEIG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yulaeva, E., , J. R. Holton, , and J. M. Wallace, 1994: On the cause of the annual cycle in tropical lower-stratospheric temperature. J. Atmos. Sci., 51, 169174, doi:10.1175/1520-0469(1994)051<0169:OTCOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 48 48 14
PDF Downloads 33 33 9

Variability of Zonal Mean Tropical Temperatures Derived from a Decade of GPS Radio Occultation Data

View More View Less
  • 1 National Center for Atmospheric Research,* Boulder, Colorado
© Get Permissions
Restricted access

Abstract

Variability in tropical zonal mean temperatures over 10–30 km is analyzed based on high-quality, high-vertical-resolution GPS temperature measurements covering 2001–13. The observations are used to quantify variability spanning time scales of weeks to over a decade, with focus on behavior of the tropopause region and coupling with the upper troposphere and stratosphere. Large variations associated with the seasonal cycle, quasi-biennial oscillation (QBO), and El Niño–Southern Oscillation (ENSO) are isolated and removed, and residual time series are analyzed using principal components and spectrum analysis. The residual temperature exhibits maximum variance in the lower stratosphere, with a vertical structure similar to the seasonal cycle. Residual temperatures exhibit two dominant modes of variability: a “deep stratosphere mode” tied to high-latitude planetary wave forcing and a shallow “near-tropopause mode” linked to dynamically forced upwelling near the tropopause. Variations in the cold point tropopause (and by inference in global stratospheric water vapor) are closely tied to the near-tropopause mode. These coherent temperature patterns provide further evidence of distinct upper and lower branches of the tropical Brewer–Dobson circulation. Zonal mean temperatures in the lower stratosphere and near the cold point are most strongly coupled to the upper troposphere on time scales of ~(30–60) days, probably linked to the Madden–Julian oscillation (MJO). Enhanced temperature variance near the tropopause is consistent with the long radiative relaxation time scales in the lower stratosphere, which makes this region especially sensitive to low-frequency dynamical forcing.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: William Randel, Atmospheric Chemistry Division, National Center for Atmospheric Research, 3450 Mitchell Lane, Boulder, CO 80301. E-mail: randel@ucar.edu

Abstract

Variability in tropical zonal mean temperatures over 10–30 km is analyzed based on high-quality, high-vertical-resolution GPS temperature measurements covering 2001–13. The observations are used to quantify variability spanning time scales of weeks to over a decade, with focus on behavior of the tropopause region and coupling with the upper troposphere and stratosphere. Large variations associated with the seasonal cycle, quasi-biennial oscillation (QBO), and El Niño–Southern Oscillation (ENSO) are isolated and removed, and residual time series are analyzed using principal components and spectrum analysis. The residual temperature exhibits maximum variance in the lower stratosphere, with a vertical structure similar to the seasonal cycle. Residual temperatures exhibit two dominant modes of variability: a “deep stratosphere mode” tied to high-latitude planetary wave forcing and a shallow “near-tropopause mode” linked to dynamically forced upwelling near the tropopause. Variations in the cold point tropopause (and by inference in global stratospheric water vapor) are closely tied to the near-tropopause mode. These coherent temperature patterns provide further evidence of distinct upper and lower branches of the tropical Brewer–Dobson circulation. Zonal mean temperatures in the lower stratosphere and near the cold point are most strongly coupled to the upper troposphere on time scales of ~(30–60) days, probably linked to the Madden–Julian oscillation (MJO). Enhanced temperature variance near the tropopause is consistent with the long radiative relaxation time scales in the lower stratosphere, which makes this region especially sensitive to low-frequency dynamical forcing.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: William Randel, Atmospheric Chemistry Division, National Center for Atmospheric Research, 3450 Mitchell Lane, Boulder, CO 80301. E-mail: randel@ucar.edu
Save