Optimal Excitation of Asymmetric Perturbations on an Axisymmetric Barotropic Vortex: A Linear Singular-Value Analysis

Toshihisa Itano Department of Earth and Ocean Sciences, National Defense Academy, Yokosuka, Japan

Search for other papers by Toshihisa Itano in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Singular vectors on a barotropic circular vortex consisting of three regions of piecewise-constant vorticity are investigated under the L2 norm to reveal the shape and growth rate of possible perturbations that may contribute to the formation of the hierarchal structure seen in natural and artificial vortices. Here, the analytical form of the singular values and the forward and backward singular vectors are derived for comparison with the corresponding eigenvalues and vectors. The results indicate no notable difference between the growing eigenvector and the singular vectors for Michalke and Timme’s profile, which is characterized by a ring of high vorticity. In contrast, for Syōno’s profile, which incorporates a negative vorticity region between a solidly rotating core and potentially rotating surroundings, the pattern of the forward singular vector giving the maximum growth in a specified time interval differs crucially from that of the growing eigenvector: whereas the radial peak of the streamfunction exists solely at the maximum-wind radius of the basic vortex in the growing eigenvector, it shifts outward in the growing forward singular vector. This implies the injection of considerable energy into the outer part of the basic vortex, rather than in the inner ring of the highest wind, facilitating the formation of hierarchal structure concentrated around the core region of the vortex.

Corresponding author address: Dr. Toshihisa Itano, Department of Earth and Ocean Sciences, National Defense Academy, 1-10-20, Hashirimizu, Yokosuka 239-8686, Japan. E-mail: itano@nda.ac.jp

Abstract

Singular vectors on a barotropic circular vortex consisting of three regions of piecewise-constant vorticity are investigated under the L2 norm to reveal the shape and growth rate of possible perturbations that may contribute to the formation of the hierarchal structure seen in natural and artificial vortices. Here, the analytical form of the singular values and the forward and backward singular vectors are derived for comparison with the corresponding eigenvalues and vectors. The results indicate no notable difference between the growing eigenvector and the singular vectors for Michalke and Timme’s profile, which is characterized by a ring of high vorticity. In contrast, for Syōno’s profile, which incorporates a negative vorticity region between a solidly rotating core and potentially rotating surroundings, the pattern of the forward singular vector giving the maximum growth in a specified time interval differs crucially from that of the growing eigenvector: whereas the radial peak of the streamfunction exists solely at the maximum-wind radius of the basic vortex in the growing eigenvector, it shifts outward in the growing forward singular vector. This implies the injection of considerable energy into the outer part of the basic vortex, rather than in the inner ring of the highest wind, facilitating the formation of hierarchal structure concentrated around the core region of the vortex.

Corresponding author address: Dr. Toshihisa Itano, Department of Earth and Ocean Sciences, National Defense Academy, 1-10-20, Hashirimizu, Yokosuka 239-8686, Japan. E-mail: itano@nda.ac.jp
Save
  • Bakas, N. A., and P. J. Ioannou, 2009: Modal and nonmodal growths of inviscid planar perturbations in shear flows with a free surface. Phys. Fluids,21, 024102, doi:10.1063/1.3072617.

  • Carnevale, G. F., and R. C. Kloosterziel, 1994: Emergence and evolution of triangular vortices. J. Fluid Mech., 259, 305331, doi:10.1017/S0022112094000157.

    • Search Google Scholar
    • Export Citation
  • Church, C. R., J. T. Snow, and E. M. Agee, 1977: Tornado vortex simulation at Purdue University. Bull. Amer. Meteor. Soc., 58, 900908, doi:10.1175/1520-0477(1977)058<0900:TVSAPU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., J. Molinari, A. R. Aiyyer, and M. L. Black, 2006: The structure and evolution of Hurricane Elena (1985). Part II: Convective asymmetries and evidence for vortex Rossby waves. Mon. Wea. Rev.,134,30733091, doi:10.1175/MWR3250.1.

  • Farrell, B. F., 1982: The initial growth of disturbances in a baroclinic flow. J. Atmos. Sci., 39, 16631686, doi:10.1175/1520-0469(1982)039<1663:TIGODI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., and P. J. Ioannou, 1996: Generalized stability theory. Part I: Autonomous operators. J. Atmos. Sci., 53, 20252040, doi:10.1175/1520-0469(1996)053<2025:GSTPIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Flierl, G. R., 1988: On the instability of geostrophic vortices. J. Fluid Mech., 197, 349388, doi:10.1017/S0022112088003283.

  • Fujita, T. T., 1971: Proposed mechanism of suction spots accompanied by tornadoes. Preprints, Seventh Conf. on Severe Local Storms, Kansas City, MO, Amer. Meteor. Soc., 208213.

  • Gent, P. R., and J. C. McWilliams, 1986: The instability of barotropic circular vortices. Geophys. Astrophys. Fluid Dyn., 35, 209233, doi:10.1080/03091928608245893.

    • Search Google Scholar
    • Export Citation
  • Guinn, T. A., and W. H. Schubert, 1993: Hurricane spiral bands. J. Atmos. Sci., 50, 33803403, doi:10.1175/1520-0469(1993)050<3380:HSB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heifetz, E., and J. Methven, 2005: Relating optimal growth to counterpropagating Rossby waves in shear instability. Phys. Fluids, 17, 064107, doi:10.1063/1.1937064.

    • Search Google Scholar
    • Export Citation
  • Itano, T., and H. Ishikawa, 2002: Effect of negative vorticity on the formation of multiple structure of natural vortices. J. Atmos. Sci., 59, 32543262, doi:10.1175/1520-0469(2002)059<3254:EONVOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Itano, T., and M. Hosoya, 2013: Spectral analyses of the polygonal eye of Typhoon Sinlaku. Mon. Wea. Rev., 141, 987996, doi:10.1175/MWR-D-12-00122.1.

    • Search Google Scholar
    • Export Citation
  • Kloosterziel, R. C., and G. J. F. van Heijst, 1991: An experimental study of unstable barotropic vortices in a rotating fluid. J. Fluid Mech., 223, 124, doi:10.1017/S0022112091001301.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and W. H. Schubert, 2004: Mesovortices in Hurricane Isabel. Bull. Amer. Meteor. Soc., 85, 151153, doi:10.1175/BAMS-85-2-151.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., W. H. Schubert, and M. T. Montgomery, 2000: Unstable interactions between a hurricane’s primary eyewall and a secondary ring of enhanced vorticity. J. Atmos. Sci., 57, 38933917, doi:10.1175/1520-0469(2001)058<3893:UIBAHS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kuo, H.-C., R. T. Williams, and J.-H. Chen, 1999: A possible mechanism for the eye rotation of Typhoon Herb. J. Atmos. Sci., 56, 16591673, doi:10.1175/1520-0469(1999)056<1659:APMFTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, S.-J., 1992: Contour dynamics of tornado-like vortices. J. Atmos. Sci., 49, 17451756, doi:10.1175/1520-0469(1992)049<1745:CDOTLV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lugovtsov, B. A., 1982: Laboratory models of tornado-like vortices. Topics in Atmospheric and Oceanographic Sciences: Intense Atmospheric Vortices, L. Bengtsson and J. Lighthill, Eds., Springer-Verlag, 299–312.

  • Michalke, A., and A. Timme, 1967: On the inviscid instability of certain two-dimensional vortex-type flows. J. Fluid Mech., 29, 647666, doi:10.1017/S0022112067001090.

    • Search Google Scholar
    • Export Citation
  • Mitsuta, Y., and S. Yoshizumi, 1973: Periodic variations of pressure, wind and rainfall observed at Miyakojima during the second Miyakojima typhoon. J. Meteor. Soc. Japan, 51, 475485.

    • Search Google Scholar
    • Export Citation
  • Mitsuta, Y., N. Monji, and H. Ishikawa, 1987: On the multiple structure of atmospheric vortices. J. Geophys. Res., 92, 14 82714 831, doi:10.1029/JD092iD12p14827.

    • Search Google Scholar
    • Export Citation
  • Monji, N., 1985: A laboratory investigation of the structure of multiple vortices. J. Meteor. Soc. Japan, 63, 703713.

  • Montgomery, M. T., V. A. Vladimirov, and P. V. Denissenko, 2002: An experimental study on hurricane mesovortices. J. Fluid Mech., 471, 132, doi:10.1017/S0022112002001647.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., and B. F. Farrell, 1999: Generalized stability analyses of asymmetric disturbances in one- and two-celled vortices maintained by radial inflow. J. Atmos. Sci., 56, 12821307, doi:10.1175/1520-0469(1999)056<1282:GSAOAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Oda, M., T. Itano, G. Naito, M. Nakanishi, and K. Tomine, 2005: Destabilization of the symmetric vortex and formation of the elliptical eye of Typhoon Herb. J. Atmos. Sci., 62, 29652976, doi:10.1175/JAS3521.1.

    • Search Google Scholar
    • Export Citation
  • Peng, M. S., and R. T. Williams, 1991: Stability analysis of barotropic vortices. Geophys. Astrophys. Fluid Dyn., 58, 263283, doi:10.1080/03091929108227342.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., 1978: A note on the stability of a cylindrical vortex sheet. J. Fluid Mech., 87, 761771, doi:10.1017/S0022112078001871.

  • Schubert, W. H., M. T. Montgomery, R. K. Taft, T. A. Guinn, S. R. Fulton, J. P. Kossin, and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56, 11971223, doi:10.1175/1520-0469(1999)056<1197:PEAECA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Snow, J. T., 1978: On inertial instability as related to the multiple-vortex phenomenon. J. Atmos. Sci., 35, 16601677, doi:10.1175/1520-0469(1978)035<1660:OIIART>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Staley, D. O., and R. L. Gall, 1979: Barotropic instability in a tornado vortex. J. Atmos. Sci., 36, 973981, doi:10.1175/1520-0469(1979)036<0973:BIIATV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Steffens, J. L., 1988: The effect of vorticity-profile shape on the instability of a two-dimensional vortex. J. Atmos. Sci., 45, 254259, doi:10.1175/1520-0469(1988)045<0254:TEOVPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Syōno, S., 1951: On the structure of atmospheric vortices. J. Meteor., 8, 103110, doi:10.1175/1520-0469(1951)008<0103:OTSOAV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Syōno, S., Y. Ogura, K. Gambo, and A. Kasahara, 1951: On the negative vorticity in a typhoon. J. Meteor. Soc. Japan, 29, 397415.

  • van Heijst, G. J. F., R. C. Kloosterziel, and C. W. M. Williams, 1991: Laboratory experiments on the tripolar vortex in a rotating fluid. J. Fluid Mech., 225, 301331, doi:10.1017/S0022112091002069.

    • Search Google Scholar
    • Export Citation
  • Ward, N. B., 1972: The explanation of certain features of tornado dynamics using a laboratory model. J. Atmos. Sci., 29, 11941204, doi:10.1175/1520-0469(1972)029<1194:TEOCFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weske, J. R., and T. M. Rankin, 1963: Generation of secondary motions in the field of a vortex. Phys. Fluids, 6, 13971403, doi:10.1063/1.1710960.

    • Search Google Scholar
    • Export Citation
  • Yamaguchi, M., D. S. Nolan, M. Iskandarani, S. J. Majumdar, M. S. Peng, and C. A. Reynolds, 2011: Singular vectors for tropical cyclone–like vortices in a nondivergent barotropic framework. J. Atmos. Sci., 68, 22732291, doi:10.1175/2011JAS3727.1.

    • Search Google Scholar
    • Export Citation
  • Yoden, S., 2007: Atmospheric predictability. J. Meteor. Soc. Japan, 85B, 77102, doi:10.2151/jmsj.85B.77.

  • Yoden, S., and M. Nomura, 1993: Finite-time Lyapunov stability analysis and its application to atmospheric predictability. J. Atmos. Sci., 50, 15311543, doi:10.1175/1520-0469(1993)050<1531:FTLSAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 73 30 2
PDF Downloads 27 14 1