Sudden Track Changes of Tropical Cyclones in Monsoon Gyres: Full-Physics, Idealized Numerical Experiments

Jia Liang Pacific Typhoon Research Center, Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, and State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Jia Liang in
Current site
Google Scholar
PubMed
Close
and
Liguang Wu Pacific Typhoon Research Center, Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, and State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Liguang Wu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Tropical cyclones (TCs) in the eastern semicircle of large-scale monsoon gyres (MGs) were observed to take either a northward (sudden northward and northward without a sharp turn) or a westward TC turn, but only the northward turn was previously simulated in a barotropic model. To understand what controls TC track types in MGs, idealized numerical experiments are performed using the full-physics Weather Research and Forecasting (WRF) Model. These experiments indicate that TCs initially located in the eastern semicircle of MGs can generally take three types of tracks: a sudden northward track, a westward track, and a northward track without a sharp turn. The track types depend upon the TC movement relative to the MG center.

In agreement with barotropic simulations, the WRF simulation confirms that approaching and being collocated with the MG center is crucial to the occurrence of sudden northward TC track changes and that sudden northward track changes can be generally accounted for by changes in the steering flow. TCs that take westward tracks and northward tracks without a sharp turn do not experience such a coalescence process. Westward TCs move faster than MGs and are then located to the west of the MG center, while TCs move more slowly than MGs and then take a northward track without a sharp turn. This study reveals that the specific TC track in the eastern semicircle of an MG is sensitive to the initial wind profiles of both MGs and TCs, suggesting that improvement in the observation of TC and MG structures is very important for predicting TC track types in MGs.

Earth System Modeling Center Contribution Number 028.

Corresponding author address: Dr. Liguang Wu, Pacific Typhoon Research Center, Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China. E-mail: liguang@nuist.edu.cn

Abstract

Tropical cyclones (TCs) in the eastern semicircle of large-scale monsoon gyres (MGs) were observed to take either a northward (sudden northward and northward without a sharp turn) or a westward TC turn, but only the northward turn was previously simulated in a barotropic model. To understand what controls TC track types in MGs, idealized numerical experiments are performed using the full-physics Weather Research and Forecasting (WRF) Model. These experiments indicate that TCs initially located in the eastern semicircle of MGs can generally take three types of tracks: a sudden northward track, a westward track, and a northward track without a sharp turn. The track types depend upon the TC movement relative to the MG center.

In agreement with barotropic simulations, the WRF simulation confirms that approaching and being collocated with the MG center is crucial to the occurrence of sudden northward TC track changes and that sudden northward track changes can be generally accounted for by changes in the steering flow. TCs that take westward tracks and northward tracks without a sharp turn do not experience such a coalescence process. Westward TCs move faster than MGs and are then located to the west of the MG center, while TCs move more slowly than MGs and then take a northward track without a sharp turn. This study reveals that the specific TC track in the eastern semicircle of an MG is sensitive to the initial wind profiles of both MGs and TCs, suggesting that improvement in the observation of TC and MG structures is very important for predicting TC track types in MGs.

Earth System Modeling Center Contribution Number 028.

Corresponding author address: Dr. Liguang Wu, Pacific Typhoon Research Center, Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China. E-mail: liguang@nuist.edu.cn
Save
  • Carr, L. E., III, and R. L. Elsberry, 1990: Observational evidence for predictions of tropical cyclone propagation relative to environmental steering. J. Atmos. Sci., 47, 542546, doi:10.1175/1520-0469(1990)047<0542:OEFPOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carr, L. E., III, and R. L. Elsberry, 1995: Monsoonal interactions leading to sudden tropical cyclone track changes. Mon. Wea. Rev., 123, 265290, doi:10.1175/1520-0493(1995)123<0265:MILTST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., and R. T. Williams, 1987: Analytical and numerical studies of the beta-effect in tropical cyclone motion. Part I: Zero mean flow. J. Atmos. Sci., 44, 12571265, doi:10.1175/1520-0469(1987)044<1257:AANSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., F. M. F. Ko, and Y. M. Lei, 2002: Relationship between potential vorticity tendency and tropical cyclone motion. J. Atmos. Sci., 59, 13171336, doi:10.1175/1520-0469(2002)059<1317:RBPVTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., J. M. Chen, P. A. Harr, and L. E. Carr, 1996: Northwestward-propagating wave-like patterns over the tropical western North Pacific during summer. Mon. Wea. Rev., 124, 22452266, doi:10.1175/1520-0493(1996)124<2245:NPWPOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Choi, Y., K.-S. Yun, K.-J. Ha, K.-Y. Kim, S.-J. Yoon, and J. C. L. Chan, 2013: Effects of asymmetric SST distribution on straight-moving Typhoon Ewiniar (2006) and recurving Typhoon Maemi (2003). Mon. Wea. Rev., 141, 39503967, doi:10.1175/MWR-D-12-00207.1.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fiorino, M., and R. L. Elsberry, 1989: Some aspects of vortex structure related to tropical cyclone motion. J. Atmos. Sci., 46, 975990, doi:10.1175/1520-0469(1989)046<0975:SAOVSR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Harr, P. A., R. L. Elsberry, and J. C. L. Chan, 1996: Transformation of a large monsoon depression to a tropical storm during TCM-93. Mon. Wea. Rev., 124, 26252643, doi:10.1175/1520-0493(1996)124<2625:TOALMD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1983: Tropical cyclone motion: Environmental interaction plus a beta effect. J. Atmos. Sci., 40, 328342, doi:10.1175/1520-0469(1983)040<0328:TCMEIP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hsu, L.-H., H.-C. Kuo, and R. G. Fovell, 2013: On the geographic asymmetry of typhoon translation speed across the mountainous island of Taiwan. J. Atmos. Sci., 70, 10061022, doi:10.1175/JAS-D-12-0173.1.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritch, 1993: Convective parameterization for mesoscale models: The Kain–Fritch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

  • Ko, K.-C., and H.-H. Hsu, 2006: Sub-monthly circulation features associated with tropical cyclone tracks over the East Asian monsoon area during July–August season. J. Meteor. Soc. Japan, 84, 871889, doi:10.2151/jmsj.84.871.

    • Search Google Scholar
    • Export Citation
  • Ko, K.-C., and H.-H. Hsu, 2009: ISO modulation on the sub-monthly wave pattern and the recurving tropical cyclones in the tropical western North Pacific. J. Climate, 22, 582599, doi:10.1175/2008JCLI2282.1.

    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., M. A. Bender, and R. J. Ross, 1993: An initialization scheme of hurricane models by vortex specification. Mon. Wea. Rev., 121, 20302045, doi:10.1175/1520-0493(1993)121<2030:AISOHM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., M. A. Bender, R. E. Tuleya, and R. J. Ross, 1995: Improvements in the GFDL hurricane prediction system. Mon. Wea. Rev., 123, 27912801, doi:10.1175/1520-0493(1995)123<2791:IITGHP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lander, M. A., 1994: Description of a monsoon gyre and its effects on the tropical cyclones in the western North Pacific during August 1991. Wea. Forecasting, 9, 640654, doi:10.1175/1520-0434(1994)009<0640:DOAMGA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lander, M. A., and G. J. Holland, 1993: On the interaction of tropical-cyclone-scale vortices. I: Observations. Quart. J. Roy. Meteor. Soc., 119, 13471361, doi:10.1002/qj.49711951406.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-H., and N.-C. Lau, 1990: Observed structure and propagation characteristics of tropical summertime synoptic scale disturbances. Mon. Wea. Rev., 118, 18881913, doi:10.1175/1520-0493(1990)118<1888:OSAPCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-H., and N.-C. Lau, 1992: The energetics and propagation dynamics of tropical summertime synoptic-scale disturbances. Mon. Wea. Rev., 120, 25232539, doi:10.1175/1520-0493(1992)120<2523:TEAPDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liang, J., L. Wu, X. Ge, and C.-C. Wu, 2011: Monsoonal influence on Typhoon Morakot (2009). Part II: Numerical study. J. Atmos. Sci., 68, 22222235, doi:10.1175/2011JAS3731.1.

    • Search Google Scholar
    • Export Citation
  • Liang, J., L. Wu, and H. Zong, 2014: Idealized numerical simulations of tropical cyclone formation associated with monsoon gyres. Adv. Atmos. Sci., 31, 305315, doi:10.1007/s00376-013-2282-1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, doi:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mallen, K. J., M. T. Montgomery, and B. Wang, 2005: Reexamining the near-core radial structure of the tropical cyclone primary circulation: Implications for vortex resiliency. J. Atmos. Sci., 62, 408425, doi:10.1175/JAS-3377.1.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res.,102, 16 663–16 682, doi:10.1029/97JD00237.

  • Noh, Y., W. G. Cheon, S. Y. Hong, and S. Raasch, 2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107, 401427, doi:10.1023/A:1022146015946.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., and M. T. Montgomery, 2001: Three-dimensional alignment and corotation of weak, TC-like vortices via linear vortex Rossby waves. J. Atmos. Sci., 58, 23062330, doi:10.1175/1520-0469(2001)058<2306:TDAACO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, and L. D. Grasso, 2004: A new look at the problem of tropical cyclones in vertical shear flow: Vortex resiliency. J. Atmos. Sci., 61, 322, doi:10.1175/1520-0469(2004)061<0003:ANLATP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., and G. J. Holland, 1993: On the interaction of tropical-cyclone-scale vortices. II: Discrete vortex patches. Quart. J. Roy. Meteor. Soc., 119, 13631379, doi:10.1002/qj.49711951407.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., 1992: Hurricane vortex motion and evolution in a three-layer model. J. Atmos. Sci., 49, 140153, doi:10.1175/1520-0469(1992)049<0140:HVMAEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., and G. N. Kiladis, 2003: Interactions between the boreal summer intraseasonal oscillation and higher-frequency tropical wave activity. Mon. Wea. Rev., 131, 945960, doi:10.1175/1520-0493(2003)131<0945:IBTBSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and X. Li, 1992: The beta drift of three-dimensional vortices: A numerical study. Mon. Wea. Rev., 120, 579593, doi:10.1175/1520-0493(1992)120<0579:TBDOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., X. Li, and L. Wu, 1997: Direction of hurricane beta drift in horizontally sheared flows. J. Atmos. Sci., 54, 14621471, doi:10.1175/1520-0469(1997)054<1462:DOHBDI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, C.-C., H.-C. Kuo, Y.-H. Chen, H.-L. Huang, C.-H. Chung, and K. Tsuboki, 2012: Effects of asymmetric latent heating on typhoon movement crossing Taiwan: The case of Morakot (2009) with extreme rainfall. J. Atmos. Sci., 69, 31723196, doi:10.1175/JAS-D-11-0346.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2007: A multiply nested, movable mesh, fully compressible, nonhydrostatic tropical cyclone model—TCM4: Model description and development of asymmetries without explicit asymmetric forcing. Meteor. Atmos. Phys., 97, 93116, doi:10.1007/s00703-006-0246-z.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and G. J. Holland, 1996a: The beta drift of baroclinic vortices. Part I: Adiabatic vortices. J. Atmos. Sci., 53, 411427, doi:10.1175/1520-0469(1996)053<0411:TBDOBV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and G. J. Holland, 1996b: The beta drift of baroclinic vortices. Part II: Diabatic vortices. J. Atmos. Sci., 53, 37373756, doi:10.1175/1520-0469(1996)053<3737:TBDOBV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and G. J. Holland, 1996c: Tropical cyclone motion and evolution in vertical shear. J. Atmos. Sci., 53, 33133332, doi:10.1175/1520-0469(1996)053<3313:TCMAEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., and K. A. Emanuel, 1993: Interaction of a baroclinic vortex with background shear: Application to hurricane movement. J. Atmos. Sci., 50, 6276, doi:10.1175/1520-0469(1993)050<0062:IOABVW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., and K. A. Emanuel, 1995a: Potential vorticity diagnostics of hurricane movement. Part I: A case study of Hurricane Bob (1991). Mon. Wea. Rev., 123, 6992, doi:10.1175/1520-0493(1995)123<0069:PVDOHM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., and K. A. Emanuel, 1995b: Potential vorticity diagnostics of hurricane movement. Part II: Tropical Storm Ana (1991) and Hurricane Andrew (1992). Mon. Wea. Rev., 123, 93109, doi:10.1175/1520-0493(1995)123<0093:PVDOHM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., and Y. Kurihara, 1996: A numerical study of the feedback mechanisms of hurricane–environment interaction on hurricane movement from the potential vorticity perspective. J. Atmos. Sci., 53, 22642282, doi:10.1175/1520-0469(1996)053<2264:ANSOTF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., S.-G. Chen, C.-C. Yang, P.-H. Lin, and S. D. Aberson, 2012: Potential vorticity diagnosis of the factors affecting the track of Typhoon Sinlaku (2008) and the impact from dropwindsonde data during T-PARC. Mon. Wea. Rev., 140, 26702688, doi:10.1175/MWR-D-11-00229.1.

    • Search Google Scholar
    • Export Citation
  • Wu, L., and B. Wang, 2000: A potential vorticity tendency diagnostic approach for tropical cyclone motion. Mon. Wea. Rev., 128, 18991911, doi:10.1175/1520-0493(2000)128<1899:APVTDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, L., and B. Wang, 2001a: Movement and vertical coupling of adiabatic baroclinic tropical cyclones. J. Atmos. Sci., 58, 18011814, doi:10.1175/1520-0469(2001)058<1801:MAVCOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, L., and B. Wang, 2001b: Effects of convective heating on movement and vertical coupling of tropical cyclones: A numerical study. J. Atmos. Sci., 58, 36393649, doi:10.1175/1520-0469(2001)058<3639:EOCHOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, L., S. A. Braun, J. Halverson, and G. Heymsfield, 2006: A numerical study of Hurricane Erin (2001). Part I: Model verification and storm evolution. J. Atmos. Sci., 63, 6586, doi:10.1175/JAS3597.1.

    • Search Google Scholar
    • Export Citation
  • Wu, L., J. Liang, and C.-C. Wu, 2011a: Monsoonal influence on Typhoon Morakot (2009). Part I: Observational analysis. J. Atmos. Sci., 68, 22082221, doi:10.1175/2011JAS3730.1.

    • Search Google Scholar
    • Export Citation
  • Wu, L., H. Zong, and J. Liang, 2011b: Observational analysis of sudden tropical cyclone track changes in the vicinity of the East China Sea. J. Atmos. Sci., 68, 30123031, doi:10.1175/2010JAS3559.1.

    • Search Google Scholar
    • Export Citation
  • Wu, L., Z. Ni, J. Duan, and H. Zong, 2013a: Sudden tropical cyclone track changes over the western North Pacific: A composite study. Mon. Wea. Rev., 141, 25972610, doi:10.1175/MWR-D-12-00224.1.

    • Search Google Scholar
    • Export Citation
  • Wu, L., H. Zong, and J. Liang, 2013b: Observational analysis of tropical cyclone formation associated with monsoon gyres. J. Atmos. Sci., 70, 10231034, doi:10.1175/JAS-D-12-0117.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 824 335 29
PDF Downloads 512 191 18