Sensitivity of Tropical Cyclone Feedback on the Intensity of the Western Pacific Subtropical High to Microphysics Schemes

Yuan Sun College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing, China

Search for other papers by Yuan Sun in
Current site
Google Scholar
PubMed
Close
,
Zhong Zhong College of Meteorology and Oceanography, PLA University of Science and Technology, and Jiangsu Collaborative Innovation Center for Climate Change and School of Atmospheric Sciences, Nanjing University, Nanjing, China

Search for other papers by Zhong Zhong in
Current site
Google Scholar
PubMed
Close
, and
Wei Lu College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing, China

Search for other papers by Wei Lu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Advanced Research version of Weather Research and Forecasting (WRF-ARW) Model is used to examine the sensitivity of a simulated tropical cyclone (TC) track and the associated intensity of the western Pacific subtropical high (WPSH) to microphysical parameterization (MP) schemes. It is found that the simulated WPSH is sensitive to MP schemes only when TCs are active over the western North Pacific. WRF fails to capture TC tracks because of errors in the simulation of the WPSH intensity. The failed simulation of WPSH intensity and TC track can be attributed to the overestimated convection in the TC eyewall region, which is caused by inappropriate MP schemes. In other words, the MP affects the simulation of the TC activity, which influences the simulation of WPSH intensity and, thus, TC track. The feedback of the TC to WPSH plays a critical role in the model behavior of the simulation. Further analysis suggests that the overestimated convection in the TC eyewall results in excessive anvil clouds and showers in the middle and upper troposphere. As the simulated TC approaches the WPSH, the excessive anvil clouds extend far away from the TC center and reach the area of the WPSH. Because of the condensation of the anvil clouds’ outflows and showers, a huge amount of latent heat is released into the atmosphere and warms the air above the freezing level at about 500 hPa. Meanwhile, the evaporative (melting) process of hydrometers in the descending flow takes place below the freezing level and cools the air in the lower and middle troposphere. As a result, the simulated WPSH intensity is weakened, and the TC turns northward earlier than in observations.

Corresponding author address: Zhong Zhong, College of Meteorology and Oceanography, PLA University of Science and Technology, No. 60, Shuanglong Road, Nanjing 211101, China. E-mail: zhong_zhong@yeah.net

Abstract

The Advanced Research version of Weather Research and Forecasting (WRF-ARW) Model is used to examine the sensitivity of a simulated tropical cyclone (TC) track and the associated intensity of the western Pacific subtropical high (WPSH) to microphysical parameterization (MP) schemes. It is found that the simulated WPSH is sensitive to MP schemes only when TCs are active over the western North Pacific. WRF fails to capture TC tracks because of errors in the simulation of the WPSH intensity. The failed simulation of WPSH intensity and TC track can be attributed to the overestimated convection in the TC eyewall region, which is caused by inappropriate MP schemes. In other words, the MP affects the simulation of the TC activity, which influences the simulation of WPSH intensity and, thus, TC track. The feedback of the TC to WPSH plays a critical role in the model behavior of the simulation. Further analysis suggests that the overestimated convection in the TC eyewall results in excessive anvil clouds and showers in the middle and upper troposphere. As the simulated TC approaches the WPSH, the excessive anvil clouds extend far away from the TC center and reach the area of the WPSH. Because of the condensation of the anvil clouds’ outflows and showers, a huge amount of latent heat is released into the atmosphere and warms the air above the freezing level at about 500 hPa. Meanwhile, the evaporative (melting) process of hydrometers in the descending flow takes place below the freezing level and cools the air in the lower and middle troposphere. As a result, the simulated WPSH intensity is weakened, and the TC turns northward earlier than in observations.

Corresponding author address: Zhong Zhong, College of Meteorology and Oceanography, PLA University of Science and Technology, No. 60, Shuanglong Road, Nanjing 211101, China. E-mail: zhong_zhong@yeah.net
Save
  • Brand, S., 1970: Interaction of binary tropical cyclones of the western North Pacific Ocean. J. Appl. Meteor., 9, 433441, doi:10.1175/1520-0450(1970)009<0433:IOBTCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., 2006: High-resolution simulation of Hurricane Bonnie (1998). Part II: Water budget. J. Atmos. Sci., 63, 4364, doi:10.1175/JAS3609.1.

    • Search Google Scholar
    • Export Citation
  • Brennan, M. J., and S. J. Majumdar, 2011: An examination of model track forecast errors for Hurricane Ike (2008) in the Gulf of Mexico. Wea. Forecasting, 26, 848867, doi:10.1175/WAF-D-10-05053.1.

    • Search Google Scholar
    • Export Citation
  • Carr, L. E., and R. L. Elsberry, 2000a: Dynamical tropical cyclone track forecast errors. Part I: Tropical region error sources. Wea. Forecasting, 15, 641661, doi:10.1175/1520-0434(2000)015<0641:DTCTFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carr, L. E., and R. L. Elsberry, 2000b: Dynamical tropical cyclone track forecast errors. Part II: Midlatitude circulation influences. Wea. Forecasting, 15, 662681, doi:10.1175/1520-0434(2000)015<0662:DTCTFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cha, D.-H., C.-S. Jin, D.-K. Lee, and Y.-H. Kuo, 2011: Impact of intermittent spectral nudging on regional climate simulation using Weather Research and Forecasting model. J. Geophys. Res., 116, D10103, doi:10.1029/2010JD015069.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 1984: An observational study of the physical processes responsible for tropical cyclone motion. J. Atmos. Sci., 41, 10361048, doi:10.1175/1520-0469(1984)041<1036:AOSOTP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., and W. M. Gray, 1982: Tropical cyclone movement and surrounding flow relationships. Mon. Wea. Rev., 110, 13541374, doi:10.1175/1520-0493(1982)110<1354:TCMASF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, S.-H., and W.-Y. Sun, 2002: A one-dimensional time dependent cloud model. J. Meteor. Soc. Japan, 80, 99118, doi:10.2151/jmsj.80.99.

    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech. Memo. 104606, 85 pp.

  • Dickinson, R. E., R. M. Errico, F. Giorgi, and G. T. Bates, 1989: A regional climate model for the western United States. Climatic Change, 15, 383422, doi:10.1007/BF00240465.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., R. F. Rogers, F. D. Marks, and D. S. Nolan, 2009: The impact of horizontal grid spacing on the microphysical and kinematic structures of strong tropical cyclones simulated with the WRF-ARW model. Mon. Wea. Rev., 137, 37173743, doi:10.1175/2009MWR2946.1.

    • Search Google Scholar
    • Export Citation
  • Fiorino, M., and R. L. Elsberry, 1989: Some aspects of vortex structure related to tropical cyclone motion. J. Atmos. Sci., 46, 975990, doi:10.1175/1520-0469(1989)046<0975:SAOVSR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Flatau, M., W. H. Schubert, and D. E. Stevens, 1994: The role of baroclinic processes in tropical cyclone motion: The influence of vertical tilt. J. Atmos. Sci., 51, 25892601, doi:10.1175/1520-0469(1994)051<2589:TROBPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., and H. Su, 2007: Impact of cloud microphysics on hurricane track forecasts. Geophys. Res. Lett., 34, L24810, doi:10.1029/2007GL031723.

    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., K. L. Corbosiero, and H.-C. Kuo, 2009: Cloud microphysics impact on hurricane track as revealed in idealized experiments. J. Atmos. Sci., 66, 17641778, doi:10.1175/2008JAS2874.1.

    • Search Google Scholar
    • Export Citation
  • Fudeyasu, H., Y. Wang, M. Satoh, T. Nasuno, H. Miura, and W. Yanase, 2010: Multiscale interactions in the life cycle of a tropical cyclone simulated in a global cloud-system-resolving model. Part I: Large-scale and storm-scale evolutions. Mon. Wea. Rev., 138, 42854304, doi:10.1175/2010MWR3474.1.

    • Search Google Scholar
    • Export Citation
  • Galarneau, T. J., Jr., and C. A. Davis, 2013: Diagnosing forecast errors in tropical cyclone motion. Mon. Wea. Rev., 141, 405430, doi:10.1175/MWR-D-12-00071.1.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., 1990: Simulation of regional climate using a limited-area model nested in general circulation model. J. Climate, 3, 941963, doi:10.1175/1520-0442(1990)003<0941:SORCUA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., M. R. Marinucci, and G. T. Bates, 1993a: Development of a second-generation regional climate model (RegCM2). Part I: Boundary-layer and radiative transfer processes. Mon. Wea. Rev., 121, 27942813, doi:10.1175/1520-0493(1993)121<2794:DOASGR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., M. R. Marinucci, G. T. Bates, and G. De Canio, 1993b: Development of a second-generation regional climate model (RegCM2). Part II: Convective processes and assimilation of lateral boundary conditions. Mon. Wea. Rev., 121, 28142832, doi:10.1175/1520-0493(1993)121<2814:DOASGR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., Y. Huang, K. Nishizawa, and C. B. Fu, 1999: A seasonal cycle simulation over eastern Asia and its sensitivity to radiative transfer and surface processes. J. Geophys. Res., 104, 64036423, doi:10.1029/1998JD200052.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and D. Dévényi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, 1693, doi:10.1029/2002GL015311.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1983: Tropical cyclone motion: Environmental interaction plus a beta effect. J. Atmos. Sci., 40, 328342, doi:10.1175/1520-0469(1983)040<0328:TCMEIP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF Single-Moment 6-class Microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120, doi:10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1996: The surface layer in the NCEP Eta Model. Preprints, 11th Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., 354355.

  • Janjić, Z. I., 2001: Nonsingular implementation of the Mellor–Yamada Level 2.5 scheme in the NCEP Meso model. NCEP Office Note 437, 61 pp. [Available online at http://www.emc.ncep.noaa.gov/officenotes/newernotes/on437.pdf.]

  • Jin, Y., and Coauthors, 2014: The impact of ice phase cloud parameterizations on tropical cyclone prediction. Mon. Wea. Rev., 142, 606625, doi:10.1175/MWR-D-13-00058.1.

    • Search Google Scholar
    • Export Citation
  • Jones, R. G., J. M. Murphy, and M. Noguer, 1995: Simulation of climate change over Europe using a nested regional-climate model. I: Assessment of control climate, including sensitivity to location of lateral boundaries. Quart. J. Roy. Meteor. Soc., 121, 14131450, doi:10.1002/qj.49712152610.

    • Search Google Scholar
    • Export Citation
  • Kieu, C. Q., N. M. Truong, H. T. Mai, and T. Ngo-Duc, 2012: Sensitivity of the track and intensity forecasts of Typhoon Megi (2010) to satellite-derived atmospheric motion vectors with the ensemble Kalman filter. J. Atmos. Oceanic Technol., 29, 17941810, doi:10.1175/JTECH-D-12-00020.1.

    • Search Google Scholar
    • Export Citation
  • Komaromi, W. A., S. J. Majumdar, and E. D. Rappin, 2011: Diagnosing initial condition sensitivity of Typhoon Sinlaku (2008) and Hurricane Ike (2008). Mon. Wea. Rev., 139, 32243242, doi:10.1175/MWR-D-10-05018.1.

    • Search Google Scholar
    • Export Citation
  • Kubota, H., and B. Wang, 2009: How much do tropical cyclones affect seasonal and interannual rainfall variability over the western North Pacific? J. Climate, 22, 54955510, doi:10.1175/2009JCLI2646.1.

    • Search Google Scholar
    • Export Citation
  • Kubota, H., R. Shirooka, T. Ushiyama, T. Chuda, S. Iwasaki, and K. Takeuchi, 2005: Seasonal variations of precipitation properties associated with the monsoon over Palau in the western Pacific. J. Hydrometeor., 6, 518531, doi:10.1175/JHM432.1.

    • Search Google Scholar
    • Export Citation
  • Lee, D.-K., and M.-S. Suh, 2000: Ten-year Asian summer monsoon simulation using a regional climate model (RegCM2). J. Geophys. Res., 105, 29 56529 577, doi:10.1029/2000JD900438.

    • Search Google Scholar
    • Export Citation
  • Leung, L. R., S. J. Ghan, Z.-C. Zhao, Y. Luo, W.-C. Wang, and H.-L. Wei, 1999: Intercomparison of regional climate simulations of the 1991 summer monsoon in eastern Asia. J. Geophys. Res., 104, 64256454, doi:10.1029/1998JD200016.

    • Search Google Scholar
    • Export Citation
  • Leung, L. R., L. O. Mearns, F. Giorgi, and R. L. Wilby, 2003: Regional climate research needs and opportunities. Bull. Amer. Meteor. Soc., 84, 8995, doi:10.1175/BAMS-84-1-89.

    • Search Google Scholar
    • Export Citation
  • Liang, X.-Z., and Coauthors, 2012: Regional Climate–Weather Research And Forecasting Model. Bull. Amer. Meteor. Soc., 93, 13631387, doi:10.1175/BAMS-D-11-00180.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, doi:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lord, S. J., H. E. Willoughby, and J. M. Piotrowicz, 1984: Role of a parameterized ice-phase microphysics in an axisymmetric, nonhydrostatic tropical cyclone model. J. Atmos. Sci., 41, 28362848, doi:10.1175/1520-0469(1984)041<2836:ROAPIP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., and R. A. Houze, 1995: Diabatic divergence profiles in western Pacific mesoscale convective systems. J. Atmos. Sci., 52, 18071828, doi:10.1175/1520-0469(1995)052<1807:DDPIWP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mass, C. F., D. Ovens, K. Westrick, and B. A. Colle, 2002: Does increasing horizontal resolution produce more skillful forecasts? Bull. Amer. Meteor. Soc., 83, 407430, doi:10.1175/1520-0477(2002)083<0407:DIHRPM>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • McCumber, M., W.-K. Tao, J. Simpson, R. Penc, and S.-T. Soong, 1991: Comparison of ice-phase microphysical parameterization schemes using numerical simulations of tropical convection. J. Appl. Meteor., 30, 9851004, doi:10.1175/1520-0450-30.7.985.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., H. Zhang, G. Heymsfield, J. B. Halverson, R. Hood, J. Dudhia, and F. Marks Jr., 2006: Factors affecting the evolution of Hurricane Erin (2001) and the distributions of hydrometeors: Role of microphysical processes. J. Atmos. Sci., 63, 127150, doi:10.1175/JAS3590.1.

    • Search Google Scholar
    • Export Citation
  • McGregor, J. L., 1997: Regional climate modelling. Meteor. Atmos. Phys., 63, 105117, doi:10.1007/BF01025367.

  • McTaggart-Cowan, R., L. F. Bosart, J. R. Gyakum, and E. H. Atallah, 2006: Hurricane Juan (2003). Part II: Forecasting and numerical simulation. Mon. Wea. Rev., 134, 17481771, doi:10.1175/MWR3143.1.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851875, doi:10.1029/RG020i004p00851.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and M. A. Obukhov, 1954: Basic laws of turbulent mixing in the ground layer of the atmosphere. Tr. Akad. Nauk. SSSR Geofiz Inst., 151, 163187.

    • Search Google Scholar
    • Export Citation
  • Mooney, P. A., F. J. Mulligan, and R. Fealy, 2013: Evaluation of the sensitivity of the Weather Research and Forecasting model to parameterization schemes for regional climates of Europe over the period 1990–95. J. Climate, 26, 10021017, doi:10.1175/JCLI-D-11-00676.1.

    • Search Google Scholar
    • Export Citation
  • Noone, D., 2012: Pairing measurements of the water vapor isotope ratio with humidity to deduce atmospheric moistening and dehydration in the tropical midtroposphere. J. Climate, 25, 44764494, doi:10.1175/JCLI-D-11-00582.1.

    • Search Google Scholar
    • Export Citation
  • Noone, D., and Coauthors, 2011: Properties of air mass mixing and humidity in the subtropics from measurements of the D/H isotope ratio of water vapor at the Mauna Loa Observatory. J. Geophys. Res., 116, D22113, doi:10.1029/2011JD015773.

    • Search Google Scholar
    • Export Citation
  • Pal, J. S., and Coauthors, 2007: Regional climate modeling for the developing world: The ICTP RegCM3 and RegCNET. Bull. Amer. Meteor. Soc., 88, 13951409, doi:10.1175/BAMS-88-9-1395.

    • Search Google Scholar
    • Export Citation
  • Pauley, P. M., and P. J. Smith, 1988: Direct and indirect effects of latent heat release on a synoptic-scale wave system. Mon. Wea. Rev., 116, 12091235, doi:10.1175/1520-0493(1988)116<1209:DAIEOL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Peng, M. S., B.-F. Jeng, and R. T. Williams, 1999: A numerical study on tropical cyclone intensification. Part I: Beta effect and mean flow effect. J. Atmos. Sci., 56, 14041423, doi:10.1175/1520-0469(1999)056<1404:ANSOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., 1990: Boundary layer structure and dynamics in outer hurricane rainbands. Part I: Mesoscale rainfall and kinematic structure. Mon. Wea. Rev., 118, 891917, doi:10.1175/1520-0493(1990)118<0891:BLSADI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Renwick, J. A., J. J. Katzfey, K. C. Nguyen, and J. L. McGregor, 1998: Regional model simulations of New Zealand climate. J. Geophys. Res., 103, 59735982, doi:10.1029/97JD02939.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and P. V. Hobbs, 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci., 41, 29492972, doi:10.1175/1520-0469(1984)041<2949:TMAMSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. [Available online at http://www2.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf.]

  • Stern, D. P., and D. S. Nolan, 2009: Reexamining the vertical structure of tangential winds in tropical cyclones: Observations and theory. J. Atmos. Sci., 66, 35793600, doi:10.1175/2009JAS2916.1.

    • Search Google Scholar
    • Export Citation
  • Stossmeister, G. J., and G. M. Barnes, 1992: The development of a second circulation center within Tropical Storm Isabel (1985). Mon. Wea. Rev., 120, 685697, doi:10.1175/1520-0493(1992)120<0685:TDOASC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sun, Y., L. Yi, Z. Zhong, Y. Hu, and Y. Ha, 2013a: Dependence of model convergence on horizontal resolution and convective parameterization in simulations of a tropical cyclone at gray-zone resolutions. J. Geophys. Res. Atmos., 118, 77157732, doi:10.1002/jgrd.50606.

    • Search Google Scholar
    • Export Citation
  • Sun, Y., Z. Zhong, Y. Ha, Y. Wang, and X. D. Wang, 2013b: The dynamic and thermodynamic effects of relative and absolute sea surface temperature on tropical cyclone intensity. Acta Meteor. Sin., 27, 4049, doi:10.1007/s13351-013-0105-z.

    • Search Google Scholar
    • Export Citation
  • Sun, Y., Z. Zhong, W. Lu, and Y. Hu, 2014: Why are tropical cyclone tracks over the western North Pacific sensitive to the cumulus parameterization scheme in regional climate modeling? A case study for Megi (2010). Mon. Wea. Rev., 142, 12401249, doi:10.1175/MWR-D-13-00232.1.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., J. Simpson, and M. McCumber, 1989: An ice–water saturation adjustment. Mon. Wea. Rev., 117, 231235, doi:10.1175/1520-0493(1989)117<0231:AIWSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542, doi:10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Wang, H., Y. Wang, and H. Xu, 2013: Improving simulation of a tropical cyclone using dynamical initialization and large-scale spectral nudging: A case study of Typhoon Megi (2010). Acta Meteor. Sin., 27, 455475, doi:10.1007/s13351-013-0418-y.

    • Search Google Scholar
    • Export Citation
  • Wang, W.-C., W. Gong, and H. Wei, 2000: A regional model simulation of the 1991 severe precipitation event over the Yangtze–Huai River valley. Part I: Precipitation and circulation statistics. J. Climate, 13, 7492, doi:10.1175/1520-0442(2000)013<0074:ARMSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2002: An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model: TCM3. Part II: Model refinements and sensitivity to cloud microphysics parameterization. Mon. Wea. Rev., 130, 30223036, doi:10.1175/1520-0493(2002)130<3022:AESOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66, 12501273, doi:10.1175/2008JAS2737.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and G. J. Holland, 1996: The beta drift of baroclinic vortices. Part II: Diabatic vortices. J. Atmos. Sci., 53, 37373756, doi:10.1175/1520-0469(1996)053<3737:TBDOBV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and B. Wang, 2001: Toward a unified highly resolved regional climate modeling system. Present and Future of Modeling Global Environmental Change: Toward Integrated Modeling, T. Matsuno and H. Kida, Eds., Terra Scientific, 29–48.

  • Wang, Y., O. L. Sen, and B. Wang, 2003: A highly resolved regional climate model (IPRC-RegCM) and its simulation of the 1998 severe precipitation event over China. Part I: Model description and verification of simulation. J. Climate, 16, 17211738, doi:10.1175/1520-0442(2003)016<1721:AHRRCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1988: The dynamics of the tropical cyclone core. Aust. Meteor. Mag., 36, 183191.

  • Wu, L., and B. Wang, 2000: A potential vorticity tendency diagnostic approach for tropical cyclone motion. Mon. Wea. Rev., 128, 18991911, doi:10.1175/1520-0493(2000)128<1899:APVTDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, L., B. Wang, and S. Geng, 2005: Growing typhoon influence on East Asia. Geophys. Res. Lett., 32, L18703, doi:10.1029/2005GL022937.

  • Yang, B., Y. Wang, and B. Wang, 2007: The effect of internally generated inner-core asymmetries on tropical cyclone potential intensity. J. Atmos. Sci., 64, 11651188, doi:10.1175/JAS3971.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., Y. Liu, and M. K. Yau, 2002: A multiscale numerical study of Hurricane Andrew (1992). Part V: Inner-core thermodynamics. Mon. Wea. Rev., 130, 27452763, doi:10.1175/1520-0493(2002)130<2745:AMNSOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, G.-J., 1994: Effects of cumulus convection on the simulated monsoon circulation in a general circulation model. Mon. Wea. Rev., 122, 20222038, doi:10.1175/1520-0493(1994)122<2022:EOCCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhong, Z., 2006: A possible cause of a regional climate model’s failure in simulating the east Asian summer monsoon. Geophys. Res. Lett., 33, L24707, doi:10.1029/2006GL027654.

    • Search Google Scholar
    • Export Citation
  • Zhong, Z., and Y. Hu, 2007: Impacts of tropical cyclones on the regional climate: An East Asian summer monsoon case. Atmos. Sci. Lett., 8, 9399, doi:10.1002/asl.158.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., R. Yu, H. Li, and B. Wang, 2008: Ocean forcing to changes in global monsoon precipitation over the recent half-century. J. Climate, 21, 38333852, doi:10.1175/2008JCLI2067.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., B. Wu, and B. Wang, 2009: How well do atmospheric general circulation models capture the leading modes of the interannual variability of the Asian–Australian monsoon? J. Climate, 22, 11591173, doi:10.1175/2008JCLI2245.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, T., and D.-L. Zhang, 2006: Numerical simulation of Hurricane Bonnie (1998). Part II: Sensitivity to varying cloud microphysical processes. J. Atmos. Sci., 63, 109126, doi:10.1175/JAS3599.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 483 153 11
PDF Downloads 439 148 12