A New Generic Method for Quantifying the Scale Predictability of the Fractal Atmosphere: Applications to Model Verification

Xingqin Fang University Corporation for Atmospheric Research, and National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Xingqin Fang in
Current site
Google Scholar
PubMed
Close
and
Ying-Hwa Kuo University Corporation for Atmospheric Research, and National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Ying-Hwa Kuo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The authors revisit the issue regarding the predictability of a flow that possesses many scales of motion raised by Lorenz in 1969 and apply the general systems theory developed by Selvam in 1990 to error diagnostics and the predictability of the fractal atmosphere. They then introduce a new generic method to quantify the scale predictability of the fractal atmosphere following the assumptions of the intrinsic inverse power law and the upscale cascade of error. The eddies (of all scales) are extracted against the instant zonal mean, and the ratio of noise (i.e., the domain-averaged square of error amplitudes) to signal (i.e., the domain-averaged square of total eddy amplitudes), referred to as noise-to-signal ratio (NSR), is defined as a measure of forecast skill. The time limit of predictability for any wavenumber can be determined by the criterion or by the criterion , where is the golden ratio and m is a scale index. The NSR is flow adaptive, bias aware, and stable in variation (in a logarithm transformation), and it offers unique advantages for model verification, allowing evaluation of different model variables, regimes, and scales in a consistent manner. In particular, an important advantage of this NSR method over the widely used anomaly correlation coefficient (ACC) method is that it could detect the successive scale predictability of different wavenumbers without the need to explicitly perform scale decomposition. As a demonstration, this new NSR method is used to examine the scale predictability of the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) 500-hPa geopotential height.

Corresponding author address: Dr. Xingqin Fang, UCAR, P.O. Box 3000, Boulder, CO 80307. E-mail: fang@ucar.edu

Abstract

The authors revisit the issue regarding the predictability of a flow that possesses many scales of motion raised by Lorenz in 1969 and apply the general systems theory developed by Selvam in 1990 to error diagnostics and the predictability of the fractal atmosphere. They then introduce a new generic method to quantify the scale predictability of the fractal atmosphere following the assumptions of the intrinsic inverse power law and the upscale cascade of error. The eddies (of all scales) are extracted against the instant zonal mean, and the ratio of noise (i.e., the domain-averaged square of error amplitudes) to signal (i.e., the domain-averaged square of total eddy amplitudes), referred to as noise-to-signal ratio (NSR), is defined as a measure of forecast skill. The time limit of predictability for any wavenumber can be determined by the criterion or by the criterion , where is the golden ratio and m is a scale index. The NSR is flow adaptive, bias aware, and stable in variation (in a logarithm transformation), and it offers unique advantages for model verification, allowing evaluation of different model variables, regimes, and scales in a consistent manner. In particular, an important advantage of this NSR method over the widely used anomaly correlation coefficient (ACC) method is that it could detect the successive scale predictability of different wavenumbers without the need to explicitly perform scale decomposition. As a demonstration, this new NSR method is used to examine the scale predictability of the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) 500-hPa geopotential height.

Corresponding author address: Dr. Xingqin Fang, UCAR, P.O. Box 3000, Boulder, CO 80307. E-mail: fang@ucar.edu
Save
  • Anthes, R. A., 1986: The general question of predictability. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 636–656.

  • Anthes, R. A., and D. P. Baumhefner, 1984: A diagram depicting forecast skill and predictability. Bull. Amer. Meteor. Soc., 65, 701703.

    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., Y.-H. Kuo, D. P. Baumhefner, R. M. Errico, and T. W. Bettge, 1985: Predictability of mesoscale atmospheric motions. Advances in Geophysics, Vol. 28B, Academic Press, 159–202, doi:10.1016/S0065-2687(08)60188-0.

  • Augier, P., and E. Lindborg, 2013: A new formulation of the spectral energy budget of the atmosphere, with application to two high-resolution general circulation models. J. Atmos. Sci., 70, 22932308, doi:10.1175/JAS-D-12-0281.1.

    • Search Google Scholar
    • Export Citation
  • Baumhefner, D. P., 1984: The relationship between present large-scale forecast skill and new estimates of predictability error growth. Proc. AIP Conf. on Predictability of Fluid Motions, La Jolla, CA, American Institute of Physics, 169–180.

  • Bengtsson, L., and A. J. Simmons, 1983: Medium-range weather prediction—Operational experience at ECMWF. Large Scale Dynamical Processes in the Atmosphere, B. J. Hoskins and R. P. Pearce, Eds., Academic Press, 337–363.

  • Burgess, B. H., A. R. Erler, and T. G. Shepherd, 2013: The troposphere-to-stratosphere transition in kinetic energy spectra and nonlinear spectral fluxes as seen in ECMWF analyses. J. Atmos. Sci., 70, 669687, doi:10.1175/JAS-D-12-0129.1.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1971: Geostrophic turbulence. J. Atmos. Sci., 28, 10871095, doi:10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2.

  • Charney, J. G., R. G. Fleagle, V. E. Lally, H. Riehl, and D. Q. Wark, 1966: The feasibility of a global observation and analysis experiment. Panel on International Meteorological Cooperation, National Academy of Sciences, Tech. Rep. 1290, 172 pp.

  • Frehlich, R., and R. Sharman, 2010: Climatology of velocity and temperature turbulence statistics determined from rawinsonde and ACARS/AMDAR data. J. Appl. Meteor. Climatol., 49, 11491169, doi:10.1175/2010JAMC2196.1.

    • Search Google Scholar
    • Export Citation
  • Hamilton, K., Y. O. Takahashi, and W. Ohfuchi, 2008: Mesoscale spectrum of atmospheric motions investigated in a very fine resolution global general circulation model. J. Geophys. Res., 113, D18110, doi:10.1029/2008JD009785.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., and C. Schär, 2007: Atmospheric predictability at synoptic versus cloud-resolving scales. Bull. Amer. Meteor. Soc., 88, 17831793, doi:10.1175/BAMS-88-11-1783.

    • Search Google Scholar
    • Export Citation
  • Hollingsworth, A., K. Arpe, M. Tiedtke, M. Capaldo, and H. Savijärvi, 1980: The performance of a medium-range forecast model in winter—Impact of physical parameterizations. Mon. Wea. Rev., 108, 17361773, doi:10.1175/1520-0493(1980)108<1736:TPOAMR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jastrow, R., and M. Halem, 1970: Simulation studies related to GARP. Bull. Amer. Meteor. Soc., 51, 490513.

  • Jolliffe, I. T., and D. B. Stephenson, 2012: Forecast Verification: A Practitioner’s Guide in Atmospheric Science, 2nd ed. John Wiley & Sons, 288 pp.

  • Kahn, B. H., and Coauthors, 2011: Temperature and water vapor variance scaling in global models: Comparisons to satellite and aircraft data. J. Atmos. Sci., 68, 21562168, doi:10.1175/2011JAS3737.1.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., and B. Wang, 2009: Global perspective of the quasi-biweekly oscillation. J. Climate, 22, 13401359, doi:10.1175/2008JCLI2368.1.

    • Search Google Scholar
    • Export Citation
  • Kolmogorov, A. N., 1941: The local structure of turbulence in incompressible viscous fluids for very large Reynolds’ numbers. Dokl. Akad. Nauk. SSSR, 30, 301305.

    • Search Google Scholar
    • Export Citation
  • Koshyk, J. N., and K. Hamilton, 2001: The horizontal kinetic energy spectrum and spectral budget simulated by a high-resolution troposphere–stratosphere–mesosphere GCM. J. Atmos. Sci., 58, 329348, doi:10.1175/1520-0469(2001)058<0329:THKESA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Langland, R. H., and R. N. Maue, 2012: Recent Northern Hemisphere mid-latitude medium-range deterministic forecast skill. Tellus, 64A, 17 531, doi:10.3402/tellusa.v64i0.17531.

    • Search Google Scholar
    • Export Citation
  • Leith, C. E., 1971: Atmospheric predictability and two-dimensional turbulence. J. Atmos. Sci., 28, 145161, doi:10.1175/1520-0469(1971)028<0145:APATDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1969: Numerical simulation of two-dimensional turbulence. Phys. Fluids, 12 (Suppl.), 240249, doi:10.1063/1.1692444.

  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130141, doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

  • Lorenz, E. N., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21, 289307, doi:10.1111/j.2153-3490.1969.tb00444.x.

    • Search Google Scholar
    • Export Citation
  • Mandelbrot, B. B., 1975: Les Objets Fractals: Forme, Hasard et Dimension. Flammarion, 190 pp.

  • Mandelbrot, B. B., 1982: The Fractal Geometry of Nature. Freeman, 468 pp.

  • Miyakoda, K., G. D. Hembree, R. F. Strickler, and I. Shulman, 1972: Cumulative results of extended forecast experiments I. Model performance for winter cases. Mon. Wea. Rev., 100, 836855, doi:10.1175/1520-0493(1972)100<0836:CROEFE>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D., and K. S. Gage, 1985: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci., 42, 950960, doi:10.1175/1520-0469(1985)042<0950:ACOAWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 1999: Predicting uncertainty in forecasts of weather and climate. ECMWF Tech. Memo. 294, 64 pp.

  • Palmer, T. N., 2001: A nonlinear dynamical perspective on model error: A proposal for non-local stochastic-dynamic parametrization in weather and climate prediction models. Quart. J. Roy. Meteor. Soc., 127, 279304.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., G. J. Shutts, R. Hagedorn, F. J. Doblas-Reyes, T. Jung, and M. Leutbecher, 2005: Representing model uncertainty in weather and climate prediction. Annu. Rev. Earth Planet. Sci., 33, 163193, doi:10.1146/annurev.earth.33.092203.122552.

    • Search Google Scholar
    • Export Citation
  • Ricard, D., C. Lac, S. Riette, R. Legrand, and A. Mary, 2013: Kinetic energy spectra characteristics of two convection-permitting limited-area models AROME and Meso-NH. Quart. J. Roy. Meteor. Soc., 139, 13271341, doi:10.1002/qj.2025.

    • Search Google Scholar
    • Export Citation
  • Selvam, A. M., 1990: Deterministic chaos, fractals and quantumlike mechanics in atmospheric flows. Can. J. Phys., 68, 831841, doi:10.1139/p90-121.

    • Search Google Scholar
    • Export Citation
  • Selvam, A. M., 1993: Universal quantification for deterministic chaos in dynamical systems. Appl. Math. Modell., 17, 642649, doi:10.1016/0307-904X(93)90074-Q.

    • Search Google Scholar
    • Export Citation
  • Selvam, A. M., 2005: A general systems theory for chaos, quantum mechanics and gravity for dynamical systems of all space-time scales. Electromagn. Phenom.,5, 158–174.

  • Selvam, A. M., 2007: Chaotic Climate Dynamics. Luniver Press, 156 pp.

  • Selvam, A. M., 2009: Fractal fluctuations and statistical normal distribution. Fractals, 17, 333349, doi:10.1142/S0218348X09004272.

  • Selvam, A. M., 2011: Signatures of universal characteristics of fractal fluctuations in global mean monthly temperature anomalies. J. Syst. Sci. Complexity, 24, 1438, doi:10.1007/s11424-011-9020-5.

    • Search Google Scholar
    • Export Citation
  • Shukla, J., 1981: Dynamic predictability of monthly means. J. Atmos. Sci., 38, 25472572, doi:10.1175/1520-0469(1981)038<2547:DPOMM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shukla, J., 1984a: Predictability of a large atmospheric model. Proc. AIP Conf. on the Predictability of Fluid Motions, G. Holloway and B. J. West, Eds., La Jolla, CA, American Institute of Physics, 449–456, doi:10.1063/1.34289.

  • Shukla, J., 1984b: Predictability of time averages: Part II. The influence of the boundary forcings. Problems and Prospects in Long and Medium Range Weather Forecasting, D. M. Burridge and E. Kallen, Eds., Springer-Verlag, 155–206, doi:10.1007/978-3-642-82132-5_6.

  • Shukla, J., 1985: Predictability. Advances in Geophysiscs, Vol. 28B, Academic Press, 87–122, doi:10.1016/S0065-2687(08)60186-7.

  • Shutts, G., 2005: A kinetic energy backscatter algorithm for use in ensemble prediction systems. Quart. J. Roy. Meteor. Soc., 131, 30793102, doi:10.1256/qj.04.106.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032, doi:10.1175/MWR2830.1.

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1969: Problems and promises of deterministic extended range forecasting. Bull. Amer. Meteor. Soc., 50, 286311.

  • Smith, K. S., 2004: Comments on “The k−3 and k−5/3 energy spectrum of atmospheric turbulence: Quasigeostrophic two-level model simulation.” J. Atmos. Sci., 61, 937942, doi:10.1175/1520-0469(2004)061<0937:COTKAE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, P. D., 1957: Uncertainty of initial state as a factor in the predictability of large scale atmospheric flow patterns. Tellus, 9A, 275295, doi:10.1111/j.2153-3490.1957.tb01885.x.

    • Search Google Scholar
    • Export Citation
  • Townsend, A. A., 1980: The Structure of Turbulent Shear Flow. 2nd ed. Cambridge University Press, 442 pp.

  • Tran, C. V., and T. G. Shepherd, 2002: Constraints on the spectral distribution of energy and enstrophy dissipation in forced two-dimensional turbulence. Physica D, 165, 199212, doi:10.1016/S0167-2789(02)00391-3.

    • Search Google Scholar
    • Export Citation
  • Tribbia, J. J., and D. P. Baumhefner, 2004: Scale interactions and atmospheric predictability: An updated perspective. Mon. Wea. Rev., 132, 703713, doi:10.1175/1520-0493(2004)132<0703:SIAAPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tulloch, R. T., and K. S. Smith, 2006: A theory for the atmospheric energy spectrum: Depth-limited temperature anomalies at the tropopause. Proc. Natl. Acad. Sci. USA, 103, 14 69014 694, doi:10.1073/pnas.0605494103.

    • Search Google Scholar
    • Export Citation
  • Tulloch, R. T., and K. S. Smith, 2009: Quasigeostrophic turbulence with explicit surface dynamics: Application to the atmospheric energy spectrum. J. Atmos. Sci., 66, 450467, doi:10.1175/2008JAS2653.1.

    • Search Google Scholar
    • Export Citation
  • Tung, K. K., and W. W. Orlando, 2003: The and energy spectrum of atmospheric turbulence: Quasigeostrophic two-level model simulation. J. Atmos. Sci., 60, 824835, doi:10.1175/1520-0469(2003)060<0824:TKAKES>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yushkov, V. P., 2012: The structural function of entropy and turbulence scales. Moscow Univ. Phys. Bull., 67, 384390, doi:10.3103/S0027134912030186.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 197 80 13
PDF Downloads 129 46 10