Wind and Temperature Oscillations Generated by Wave–Turbulence Interactions in the Stably Stratified Boundary Layer

Jielun Sun National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Jielun Sun in
Current site
Google Scholar
PubMed
Close
,
Larry Mahrt Oregon State University, Corvallis, Oregon

Search for other papers by Larry Mahrt in
Current site
Google Scholar
PubMed
Close
,
Carmen Nappo CJN Research Meteorology, Knoxville, Tennessee

Search for other papers by Carmen Nappo in
Current site
Google Scholar
PubMed
Close
, and
Donald H. Lenschow National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Donald H. Lenschow in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The authors investigate atmospheric internal gravity waves (IGWs): their generation and induction of global intermittent turbulence in the nocturnal stable atmospheric boundary layer based on the new concept of turbulence generation discussed in a prior paper by Sun et al. The IGWs are generated by air lifted by convergence forced by the colliding background flow and cold currents near the ground. The buoyancy-forced IGWs enhance wind speed at the wind speed wave crests such that the bulk shear instability generates large coherent eddies, which augment local turbulent mixing and vertically redistribute momentum and heat. The periodically enhanced turbulent mixing, in turn, modifies the air temperature and flow oscillations of the original IGWs. These turbulence-forced oscillations (TFOs) resemble waves and coherently transport momentum and sensible heat. The observed momentum and sensible heat fluxes at the IGW frequency, which are due to either the buoyancy-forced IGWs themselves or the TFOs, are larger than turbulent fluxes near the surface. The IGWs enhance not only the bulk shear at the wave crests, but also local shear over the wind speed troughs of the surface IGWs. Temporal and spatial variations of turbulent mixing as a result of this wave-induced turbulent mixing change the mean airflow and the shape of the IGWs.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Jielun Sun, National Center for Atmospheric Research, 3450 Mitchell Lane, Boulder, CO 80307. E-mail: jsun@ucar.edu

Abstract

The authors investigate atmospheric internal gravity waves (IGWs): their generation and induction of global intermittent turbulence in the nocturnal stable atmospheric boundary layer based on the new concept of turbulence generation discussed in a prior paper by Sun et al. The IGWs are generated by air lifted by convergence forced by the colliding background flow and cold currents near the ground. The buoyancy-forced IGWs enhance wind speed at the wind speed wave crests such that the bulk shear instability generates large coherent eddies, which augment local turbulent mixing and vertically redistribute momentum and heat. The periodically enhanced turbulent mixing, in turn, modifies the air temperature and flow oscillations of the original IGWs. These turbulence-forced oscillations (TFOs) resemble waves and coherently transport momentum and sensible heat. The observed momentum and sensible heat fluxes at the IGW frequency, which are due to either the buoyancy-forced IGWs themselves or the TFOs, are larger than turbulent fluxes near the surface. The IGWs enhance not only the bulk shear at the wave crests, but also local shear over the wind speed troughs of the surface IGWs. Temporal and spatial variations of turbulent mixing as a result of this wave-induced turbulent mixing change the mean airflow and the shape of the IGWs.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Jielun Sun, National Center for Atmospheric Research, 3450 Mitchell Lane, Boulder, CO 80307. E-mail: jsun@ucar.edu
Save
  • Acevedo, O. C., and D. R. Fitzjarrald, 2003: In the core of the night—Effects of intermittent mixing on a horizontally heterogeneous surfaces. Bound.-Layer Meteor., 106, 133, doi:10.1023/A:1020824109575.

    • Search Google Scholar
    • Export Citation
  • Balachandran, N. K., 1980: Gravity waves from thunderstorms. Mon. Wea. Rev., 108, 804816, doi:10.1175/1520-0493(1980)108<0804:GWFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Balsley, B., D. Fritts, R. Frehlich, R. M. Jones, S. Vadas, and R. Coulter, 2002: Up-gully flow in the great plains region: A mechanism for perturbing the nighttime lower atmosphere? Geophys. Res. Lett.,29, 1931, doi:10.1029/2002GL015435.

  • Banta, R. M., L. Mahrt, D. Vickers, J. Sun, B. B. Balsley, Y. L. Pichugina, and E. J. Williams, 2007: The very stable boundary layer on nights with weak low-level jets. J. Atmos. Sci., 64, 30683091, doi:10.1175/JAS4002.1.

    • Search Google Scholar
    • Export Citation
  • Belcher, S. E., and N. Wood, 1996: Form and wave drag due to stably stratified turbulent flow over low ridges. Quart. J. Roy. Meteor. Soc., 122, 863902, doi:10.1002/qj.49712253205.

    • Search Google Scholar
    • Export Citation
  • Belcher, S. E., I. N. Harman, and J. J. Finnigan, 2012: The wind in the willows: Flows in forest canopies in complex terrain. Annu. Rev. Fluid Mech., 44, 479504, doi:10.1146/annurev-fluid-120710-101036.

    • Search Google Scholar
    • Export Citation
  • Blumen, W., R. Banta, S. P. Burns, D. C. Fritts, R. Newsom, G. S. Poulos, and J. Sun, 2001: Turbulence statistics of a Kelvin–Helmholtz billow event observed in the night-time boundary layer during the Cooperative Atmosphere–Surface Exchange Study field program. Dyn. Atmos. Oceans, 34, 189204, doi:10.1016/S0377-0265(01)00067-7.

    • Search Google Scholar
    • Export Citation
  • Brown, A. R., M. Athanassiadou, and N. Wood, 2003: Topographically induced waves within the stable boundary layer. Quart. J. Roy. Meteor. Soc., 129, 33573370, doi:10.1256/qj.02.176.

    • Search Google Scholar
    • Export Citation
  • Carpenter, J. R., E. W. Tedford, E. Heifetz, and G. A. Lawrence, 2013: Instability in stratified shear flow: Review of a physical interpretation based on interacting waves. Appl. Mech. Rev.,64, 060801, doi:10.1115/1.4007909.

  • Chemel, C., C. Staquet, and Y. Largeron, 2009: Generation of internal gravity waves by a katabatic wind in an idealized alpine valley. Meteor. Atmos. Phys., 103, 187194, doi:10.1007/s00703-009-0349-4.

    • Search Google Scholar
    • Export Citation
  • Chilson, P. B., A. Muschinski, and G. Schmidt, 1997: First observations of Kelvin–Helmholtz billows in an upper level jet stream using VHF frequency domain interferometry. Radio Sci., 32, 11491160, doi:10.1029/97RS00088.

    • Search Google Scholar
    • Export Citation
  • Chimonas, G., 1995: Long-wavelength gravity wave instabilities: A comparison of the Jeffreys drag mechanism with the shear instability. J. Atmos. Sci., 52, 191195, doi:10.1175/1520-0469(1995)052<0191:LWGWIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chimonas, G., 2002: On internal gravity waves associated with the stable boundary layer. Bound.-Layer Meteor., 102, 139155, doi:10.1023/A:1012730306799.

    • Search Google Scholar
    • Export Citation
  • Chimonas, G., 2003: Pressure gradient amplification of shear instabilities in the boundary layer. Dyn. Atmos. Oceans, 37, 131145, doi:10.1016/S0377-0265(03)00028-9.

    • Search Google Scholar
    • Export Citation
  • Chimonas, G., and C. J. Nappo, 1987: A thunderstorm bow wave. J. Atmos. Sci., 44, 533541, doi:10.1175/1520-0469(1987)044<0533:ATBW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chimonas, G., and C. J. Nappo, 1989: Wave drag in the planetary boundary layer over complex terrain. Bound.-Layer Meteor., 47, 217232, doi:10.1007/BF00122330.

    • Search Google Scholar
    • Export Citation
  • Costa, F. D., O. C. Acevedo, J. C. M. Mombach, and G. A. Degrazia, 2011: A simplified model for intermittent turbulence in the nocturnal boundary layer. J. Atmos. Sci., 68, 17141729, doi:10.1175/2011JAS3655.1.

    • Search Google Scholar
    • Export Citation
  • Coulter, R., and J. Doran, 2002: Spatial and temporal occurrences of intermittent turbulence during CASES-99. Bound.-Layer Meteor., 105, 329349, doi:10.1023/A:1019993703820.

    • Search Google Scholar
    • Export Citation
  • Curry, M. J., and R. C. Murty, 1974: Thunderstorm-generated gravity waves. J. Atmos. Sci., 31, 14021408, doi:10.1175/1520-0469(1974)031<1402:TGGW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Doran, J. C., 2004: Characteristics of intermittent turbulent temperature fluxes in stable conditions. Bound.-Layer Meteor., 112, 241255, doi:10.1023/B:BOUN.0000027907.06649.d0.

    • Search Google Scholar
    • Export Citation
  • Dörnbrack, A., and C. J. Nappo, 1997: A note on the application of linear wave theory at a critical level. Bound.-Layer Meteor., 82, 399416, doi:10.1023/A:1000270821161.

    • Search Google Scholar
    • Export Citation
  • Einaudi, F., and J. J. Finnigan, 1981: The interaction between an internal gravity wave and the planetary boundary layer. Part I: the linear analysis. Quart. J. Roy. Meteor. Soc., 107, 793806, doi:10.1002/qj.49710745404.

    • Search Google Scholar
    • Export Citation
  • Einaudi, F., and J. J. Finnigan, 1993: Wave–turbulence dynamics in the stably stratified boundary layer. J. Atmos. Sci., 50, 18411864, doi:10.1175/1520-0469(1993)050<1841:WTDITS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Einaudi, F., A. J. Bedard Jr., and J. J. Finnigan, 1989: A climatology of gravity waves and other coherent disturbances at the Boulder Atmospheric Observatory during March–April 1984. J. Atmos. Sci., 46, 303329, doi:10.1175/1520-0469(1989)046<0303:ACOGWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Finnigan, J. J., and F. Einaudi, 1981: The interaction between an internal gravity wave and the planetary boundary layer. Part II: Effect of the wave on the turbulence structure. Quart. J. Roy. Meteor. Soc., 107, 807832, doi:10.1002/qj.49710745405.

    • Search Google Scholar
    • Export Citation
  • Finnigan, J. J., F. Einaudi, and D. Fua, 1984: The interaction between an internal gravity wave and turbulence in the stably-stratified nocturnal boundary layer. J. Atmos. Sci., 41, 24092436, doi:10.1175/1520-0469(1984)041<2409:TIBAIG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Finnigan, J. J., R. H. Shaw, and E. G. Patton, 2009: Turbulence structure above a vegetation canopy. J. Fluid Mech., 637, 387424, doi:10.1017/S0022112009990589.

    • Search Google Scholar
    • Export Citation
  • Fitzjarrald, D. R., and K. E. Moore, 1990: Mechanisms of nocturnal exchange between the rain forest and the atmosphere. J. Geophys. Res., 95, 16 83916 850, doi:10.1029/JD095iD10p16839.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., C. Nappo, D. M. Riggin, B. B. Balsley, W. E. Eichinger, and R. K. Newsom, 2003: Analysis of ducted motions in the stable nocturnal boundary layer during CASES-99. J. Atmos. Sci., 60, 24502471, doi:10.1175/1520-0469(2003)060<2450:AODMIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1992: The Atmospheric Boundary Layer. Cambridge Atmospheric and Space Science Series, Cambridge University Press, 316 pp.

    • Search Google Scholar
    • Export Citation
  • Geller, M. A., H. Tanaka, and D. C. Fritts, 1975: Production of turbulence in the vicinity of critical levels for internal gravity waves. J. Atmos. Sci., 32, 21252135, doi:10.1175/1520-0469(1975)032<2125:POTITV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gossard, E. E., and W. H. Hooke, 1975: Waves in the Atmosphere: Atmospheric Infrasound and Gravity Waves. Their Generation and Propagation. Elsevier Scientific Publishing Company, 456 pp.

    • Search Google Scholar
    • Export Citation
  • Gossard, E. E., J. E. Gaynor, R. J. Zamora, and W. D. Neff, 1985: Finestructure of elevated stable layers observed by sounder and in situ tower sensors. J. Atmos. Sci., 42, 21562169, doi:10.1175/1520-0469(1985)042<2156:FOESLO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ha, K.-J., Y.-K. Hyun, H.-M. Oh, K.-E. Kim, and L. Mahrt, 2007: Evaluation of boundary layer similarity theory for stable conditions in CASES-99. Mon. Wea. Rev., 135, 34743483, doi:10.1175/MWR3488.1.

    • Search Google Scholar
    • Export Citation
  • Hardy, K. R., R. J. Reed, and G. K. Mather, 1973: Observation of Kelvin–Helmholtz billows and their mesoscale environment by radar, instrumented aircraft, and a dense radiosonde network. Quart. J. Roy. Meteor. Soc., 99, 279293, doi:10.1002/qj.49709942007.

    • Search Google Scholar
    • Export Citation
  • Howell, J., 1995: Identifying sudden changes in data. Mon. Wea. Rev., 123, 12071212, doi:10.1175/1520-0493(1995)123<1207:ISCID>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Howell, J., and L. Mahrt, 1994: An adaptive multiresolution data filter: Applications to turbulence and climatic time series. J. Atmos. Sci., 51, 21652178, doi:10.1175/1520-0469(1994)051<2165:AAMDFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Howell, J., and J. Sun, 1999: Surface-layer fluxes in stable conditions. Bound.-Layer Meteor., 90, 495520, doi:10.1023/A:1001788515355.

    • Search Google Scholar
    • Export Citation
  • Hu, X., X. Lee, D. E. Stevens, and R. B. Smith, 2002: A numerical study of nocturnal wavelike motion in forests. Bound.-Layer Meteor., 102, 199223, doi:10.1023/A:1013167228992.

    • Search Google Scholar
    • Export Citation
  • Jeffreys, H., 1925: The flow of water in an inclined channel of rectangular section. Philos. Mag., 49, 793807, doi:10.1080/14786442508634662.

    • Search Google Scholar
    • Export Citation
  • Jordan, A. R., 1972: Atmospheric gravity waves from winds and storms. J. Atmos. Sci., 29, 445456, doi:10.1175/1520-0469(1972)029<0445:AGWFWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • King, J. C., S. D. Mobbs, and N. R. Edwards, 1994: Surface boundary conditions in stably-stratified environmental flows. Stably Stratified Flows: Flow and Dispersion over Topography, I. P. Castro and N. J. Rockliff, Eds., Institute of Mathematics and Its Applications Conf. Series, Vol. 52, Oxford University Press, 93–103.

  • Kunkel, K. E., and D. L. Walters, 1982: Intermittent turbulence in measurements of the temperature structure parameter under very stable conditions. Bound.-Layer Meteor., 22, 4960, doi:10.1007/BF00128055.

    • Search Google Scholar
    • Export Citation
  • Lee, X., H. H. Neumann, G. D. Hartog, J. D. Fuentes, T. A. Black, R. E. Mickle, P. C. Yang, and P. D. Blaken, 1997: Observation of gravity waves in a boreal forest. Bound.-Layer Meteor., 84, 383398, doi:10.1023/A:1000454030493.

    • Search Google Scholar
    • Export Citation
  • Lenschow, D., B. Stankov, and L. Mahrt, 1979: The rapid morning boundary-layer transition. J. Atmos. Sci., 36, 21082124, doi:10.1175/1520-0469(1979)036<2108:TRMBLT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 1989: Intermittency of atmospheric turbulence. J. Atmos. Sci., 46, 7995, doi:10.1175/1520-0469(1989)046<0079:IOAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 2010: Common microfronts and other solitary events in the nocturnal boundary layer. Quart. J. Roy. Meteor. Soc., 136, 17121722, doi:10.1002/qj.694.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., C. Thomas, S. Richardson, N. Seaman, D. Stauffer, and M. Zeeman, 2013: Non-stationary generation of weak turbulence for very stable and weak-wind conditions. Bound.-Layer Meteor., 147, 179199, doi:10.1007/s10546-012-9782-x.

    • Search Google Scholar
    • Export Citation
  • Mann, M. E., R. S. Bradley, and M. K. Hughes, 1999: Northern hemisphere temperatures during the past millennium: Inferences, uncertainties, and limitations. Geophys. Res. Lett., 26, 759762, doi:10.1029/1999GL900070.

    • Search Google Scholar
    • Export Citation
  • Martins, H. S., L. D. A. , and O. L. L. Moraes, 2013: Low level jets in the Pantanal wetland nocturnal boundary layer—Case studies. Amer. J. Environ. Eng., 3, 3247, doi:10.5923/j.ajee.20130301.06.

    • Search Google Scholar
    • Export Citation
  • Meillier, Y. P., R. G. Frehlich, R. M. Jones, and B. B. Balsley, 2008: Modulation of small-scale turbulence by ducted gravity waves in the nocturnal boundary layer. J. Atmos. Sci., 65, 14141427, doi:10.1175/2007JAS2359.1.

    • Search Google Scholar
    • Export Citation
  • Nai-Ping, L., W. D. Neff, and J. C. Kaimal, 1983: Wave and turbulence structure in a disturbed nocturnal inversion. Bound.-Layer Meteor., 26, 141155, doi:10.1007/BF00121539.

    • Search Google Scholar
    • Export Citation
  • Nappo, C. J., 1991: Sporadic breakdowns of stability in the PBL over simple and complex terrain. Bound.-Layer Meteor., 54, 6987, doi:10.1007/BF00119413.

    • Search Google Scholar
    • Export Citation
  • Nappo, C. J., 2012: An Introduction to Atmospheric Gravity Waves. 2nd ed. International Geophysics Series, Vol. 102, Academic Press, 400 pp.

  • Nappo, C. J., and G. Chimonas, 1992: Wave exchange between the ground surface and a boundary-layer critical level. J. Atmos. Sci., 49, 10751091, doi:10.1175/1520-0469(1992)049<1075:WEBTGS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nappo, C. J., D. R. Miller, and A. L. Hiscox, 2008: Wave-modified flux and plume dispersion in the stable boundary layer. Bound.-Layer Meteor., 129, 211223, doi:10.1007/s10546-008-9315-9.

    • Search Google Scholar
    • Export Citation
  • Newsom, R. K., and R. M. Banta, 2003: Shear-flow instability in the stable nocturnal boundary layer as observed by Doppler lidar during CASES-99. J. Atmos. Sci., 60, 1633, doi:10.1175/1520-0469(2003)060<0016:SFIITS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Poulos, G. S., and Coauthors, 2002: CASES-99: A comprehensive investigation of the stable nocturnal boundary layer. Bull. Amer. Meteor. Soc., 83, 555581, doi:10.1175/1520-0477(2002)083<0555:CACIOT>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pulido, M., and G. Chimonas, 2001: Forest canopy waves: The long-wavelength component. Bound.-Layer Meteor., 100, 209224, doi:10.1023/A:1019246513260.

    • Search Google Scholar
    • Export Citation
  • Rees, J. M., and S. D. Mobbs, 1988: Studies of internal gravity waves at Halley Base, Antarctica, using wind observations. Quart. J. Roy. Meteor. Soc., 114, 939966, doi:10.1002/qj.49711448206.

    • Search Google Scholar
    • Export Citation
  • Rees, J. M., and J. W. Rottman, 1994: Analysis of solitary disturbances over an Antarctic Ice Shelf. Bound.-Layer Meteor., 69, 285310, doi:10.1007/BF00708859.

    • Search Google Scholar
    • Export Citation
  • Rees, J. M., J. C. W. Denholm-Price, J. C. King, and P. S. Anderson, 2000: A climatological study of internal gravity waves in the atmospheric boundary layer overlying the Brunt Ice Shelf, Antarctica. J. Atmos. Sci., 57, 511526, doi:10.1175/1520-0469(2000)057<0511:ACSOIG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rees, J. M., W. J. Staszewski, and J. R. Winkler, 2001: Case study of a wave event in the stable atmospheric boundary layer overlying an Antarctic Ice Shelf using the orthogonal wavelet transform. Dyn. Atmos. Oceans, 34, 245261, doi:10.1016/S0377-0265(01)00070-7.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1989: Hydrostatic airflow over mountains. Advances in Geophysics, Vol. 31, Academic Press, 141.

  • Smith, R. B., J. D. Doyle, Q. Jiang, and S. A. Smith, 2007: Alpine gravity waves: Lessons from MAP regarding mountain wave generation and breaking. Quart. J. Roy. Meteor. Soc., 133, 917936, doi:10.1002/qj.103.

    • Search Google Scholar
    • Export Citation
  • Soler, M. R., C. Infante, P. Buenestado, and L. Mahrt, 2002: Observations of nocturnal drainage flow in a shallow gully. Bound.-Layer Meteor., 105, 253273, doi:10.1023/A:1019910622806.

    • Search Google Scholar
    • Export Citation
  • Staquet, C., 2004: Gravity and inertia-gravity internal waves: Breaking processes and induced mixing. Surv. Geophys., 25, 281314, doi:10.1007/s10712-003-1280-8.

    • Search Google Scholar
    • Export Citation
  • Staquet, C., and J. Sommeria, 2002: Internal gravity waves: From instabilities to turbulence. Annu. Rev. Fluid Mech., 34, 559593, doi:10.1146/annurev.fluid.34.090601.130953.

    • Search Google Scholar
    • Export Citation
  • Sun, J., 2011: Vertical variations of the mixing lengths under neutral and stable conditions during CASES-99. J. Appl. Meteor. Climatol., 50, 20302041, doi:10.1175/JAMC-D-10-05006.1.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and S. F. De Wekker, 2012: Atmospheric carbon dioxide transport over mountainous terrain. Mountain Ecosystems: Dynamics, Management and Conservation, K. E. Richards, Ed., Nova Science Publishers, 101–121.

  • Sun, J., and Coauthors, 2002: Intermittent turbulence associated with a density current passage in the stable boundary layer. Bound.-Layer Meteor., 105, 199219, doi:10.1023/A:1019969131774.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and Coauthors, 2004: Atmospheric disturbances that generate intermittent turbulence in nocturnal boundary layers. Bound.-Layer Meteor., 110, 255279, doi:10.1023/A:1026097926169.

    • Search Google Scholar
    • Export Citation
  • Sun, J., L. Mahrt, R. M. Banta, and Y. L. Pichugina, 2012: Turbulence regimes and turbulence intermittency in the stable boundary layer during CASES-99. J. Atmos. Sci., 69, 338351, doi:10.1175/JAS-D-11-082.1.

    • Search Google Scholar
    • Export Citation
  • Sun, J., D. H. Lenschow, L. Mahrt, and C. J. Nappo, 2013: The relationships among wind, horizontal pressure gradient, and turbulent momentum transport during CASES-99. J. Atmos. Sci., 70, 33973414, doi:10.1175/JAS-D-12-0233.1.

    • Search Google Scholar
    • Export Citation
  • Teixeira, M. A. C., and P. M. A. Miranda, 2004: The effect of wind shear and curvature on the gravity wave drag produced by a ridge. J. Atmos. Sci., 61, 26382643, doi:10.1175/JAS3282.1.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1987: Transitional phenomena and the development of turbulence in stratified fluids: A review. J. Geophys. Res., 92, 52315248, doi:10.1029/JC092iC05p05231.

    • Search Google Scholar
    • Export Citation
  • Tjernström, M., B. B. Balsley, G. Svensson, and C. J. Nappo, 2009: The effects of critical layers on residual layer turbulence. J. Atmos. Sci., 66, 468480, doi:10.1175/2008JAS2729.1.

    • Search Google Scholar
    • Export Citation
  • van de Wiel, B. J. H., A. F. Moene, O. K. Hartogensis, H. A. R. De Bruin, and A. A. M. Holtslag, 2003: Intermittent turbulence in the stable boundary layer over land. Part III: A classification for observations during CASES-99. J. Atmos. Sci., 60, 25092522, doi:10.1175/1520-0469(2003)060<2509:ITITSB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • van de Wiel, B. J. H., A. F. Moene, H. J. J. Jonker, P. Baas, S. Basu, J. M. M. Donda, J. Sun, and A. A. M. Holtslag, 2012: The minimum wind speed for sustainable turbulence in the nocturnal boundary layer. J. Atmos. Sci., 69, 31163127, doi:10.1175/JAS-D-12-0107.1.

    • Search Google Scholar
    • Export Citation
  • Viana, S., E. Terradellas, and C. Yagüe, 2010: Analysis of gravity waves generated at the top of a drainage flow. J. Atmos. Sci., 67, 39493966, doi:10.1175/2010JAS3508.1.

    • Search Google Scholar
    • Export Citation
  • Vindel, J., and C. Yagüe, 2011: Intermittency of turbulence in the atmospheric boundary layer: Scaling exponents and stratification influence. Bound.-Layer Meteor., 140, 7385, doi:10.1007/s10546-011-9597-1.

    • Search Google Scholar
    • Export Citation
  • Vosper, S. B., and A. R. Brown, 2007: The effect of small-scale hills on orographic drag. Quart. J. Roy. Meteor. Soc., 133, 13451352, doi:10.1002/qj.101.

    • Search Google Scholar
    • Export Citation
  • Yagüe, C., G. Maqueda, and J. M. Rees, 2001: Characteristics of turbulence in the lower atmosphere at Halley IV station, Antarctica. Dyn. Atmos. Oceans, 34, 205223, doi:10.1016/S0377-0265(01)00068-9.

    • Search Google Scholar
    • Export Citation
  • Zhou, B., and F. K. Chow, 2012: Turbulence modeling for the stable atmospheric boundary layer and implications for wind energy. Flow Turbul. Combust., 88, 255277, doi:10.1007/s10494-011-9359-7.

    • Search Google Scholar
    • Export Citation
  • Zhou, B., and F. K. Chow, 2014: Nested large-eddy simulations of the intermittently turbulent stable atmospheric boundary layer over real terrain. J. Atmos. Sci., 71, 10211039, doi:10.1175/JAS-D-13-0168.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 667 189 17
PDF Downloads 502 131 15