Shear Capacity as Prognostic for Nocturnal Boundary Layer Regimes

Ivo G. S. van Hooijdonk Fluid Dynamics Laboratory, and J.M. Burgerscentrum, Eindhoven University of Technology, Eindhoven, Netherlands

Search for other papers by Ivo G. S. van Hooijdonk in
Current site
Google Scholar
PubMed
Close
,
Judith M. M. Donda Fluid Dynamics Laboratory, and J.M. Burgerscentrum, Eindhoven University of Technology, Eindhoven, Netherlands

Search for other papers by Judith M. M. Donda in
Current site
Google Scholar
PubMed
Close
,
Herman J. H. Clercx Fluid Dynamics Laboratory, and J.M. Burgerscentrum, Eindhoven University of Technology, Eindhoven, Netherlands

Search for other papers by Herman J. H. Clercx in
Current site
Google Scholar
PubMed
Close
,
Fred C. Bosveld Royal Netherlands Meteorological Institute, De Bilt, Netherlands

Search for other papers by Fred C. Bosveld in
Current site
Google Scholar
PubMed
Close
, and
Bas J. H. van de Wiel Fluid Dynamics Laboratory, and J.M. Burgerscentrum, Eindhoven University of Technology, Eindhoven, Netherlands

Search for other papers by Bas J. H. van de Wiel in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Field observations and theoretical analysis are used to investigate the appearance of different nocturnal boundary layer regimes. Recent theoretical findings predict the appearance of two different regimes: the continuously turbulent (weakly stable) boundary layer and the relatively “quiet” (very stable) boundary layer. A large number of nights (approximately 4500 in total) are analyzed using an ensemble averaging technique. The observations support the existence of these two fundamentally different regimes: weakly stable (turbulent) nights rapidly reach a steady state (within 2–3 h). In contrast, very stable nights reach a steady state much later after a transition period (2–6 h). During this period turbulence is weak and nonstationary. To characterize the regime, a new parameter is introduced: the shear capacity. This parameter compares the actual shear after sunset with the minimum shear needed to sustain continuous turbulence. In turn, the minimum shear is dictated by the heat flux demand at the surface (net radiative cooling), so that the shear capacity combines flow information with knowledge of the boundary condition. It is shown that the shear capacity enables prediction of the flow regimes. The prognostic strength of this nondimensional parameter appears to outperform the traditional ones like the similarity parameter z/L and the gradient Richardson number Ri as a regime indicator.

Denotes Open Access content.

Corresponding author address: I. G. S. van Hooijdonk, Fluid Dynamics Laboratory, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, Netherlands. E-mail: i.g.s.v.hooijdonk@tue.nl

Abstract

Field observations and theoretical analysis are used to investigate the appearance of different nocturnal boundary layer regimes. Recent theoretical findings predict the appearance of two different regimes: the continuously turbulent (weakly stable) boundary layer and the relatively “quiet” (very stable) boundary layer. A large number of nights (approximately 4500 in total) are analyzed using an ensemble averaging technique. The observations support the existence of these two fundamentally different regimes: weakly stable (turbulent) nights rapidly reach a steady state (within 2–3 h). In contrast, very stable nights reach a steady state much later after a transition period (2–6 h). During this period turbulence is weak and nonstationary. To characterize the regime, a new parameter is introduced: the shear capacity. This parameter compares the actual shear after sunset with the minimum shear needed to sustain continuous turbulence. In turn, the minimum shear is dictated by the heat flux demand at the surface (net radiative cooling), so that the shear capacity combines flow information with knowledge of the boundary condition. It is shown that the shear capacity enables prediction of the flow regimes. The prognostic strength of this nondimensional parameter appears to outperform the traditional ones like the similarity parameter z/L and the gradient Richardson number Ri as a regime indicator.

Denotes Open Access content.

Corresponding author address: I. G. S. van Hooijdonk, Fluid Dynamics Laboratory, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, Netherlands. E-mail: i.g.s.v.hooijdonk@tue.nl
Save
  • Acevedo, O., and D. Fitzjarrald, 2000: Relating temporal and spatial structure of the nocturnal surface layer to landscape heterogeneity. 14th Symp. on Boundary Layer and Turbulence, Aspen, CO, Amer. Meteor. Soc., 7.12. [Available online at https://ams.confex.com/ams/AugAspen/techprogram/paper_14920.htm.]

  • Ansorge, C., and J. Mellado, 2014: Global intermittency and collapsing turbulence in the stratified planetary boundary layer. Bound.-Layer Meteor., 153, 89116, doi:10.1007/s10546-014-9941-3.

    • Search Google Scholar
    • Export Citation
  • Baas, P., G. S. Steeneveld, B. van de Wiel, and A. Holtslag, 2006: Exploring self-correlation in flux–gradient relationships for stably stratified conditions. J. Atmos. Sci., 63, 30453054, doi:10.1175/JAS3778.1.

    • Search Google Scholar
    • Export Citation
  • Baas, P., B. van de Wiel, L. van den Brink, and A. Holtslag, 2012: Composite hodographs and inertial oscillations in the nocturnal boundary layer. Quart. J. Roy. Meteor. Soc., 138, 528535, doi:10.1002/qj.941.

    • Search Google Scholar
    • Export Citation
  • Basu, S., A. A. Holtslag, B. J. van de Wiel, A. F. Moene, and G.-J. Steeneveld, 2008: An inconvenient “truth” about using sensible heat flux as a surface boundary condition in models under stably stratified regimes. Acta Geophys., 56, 8899, doi:10.2478/s11600-007-0038-y.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A., and F. Bosveld, 1997: Cabauw data for the validation of land surface parameterization schemes. J. Climate, 10, 11721193, doi:10.1175/1520-0442(1997)010<1172:CDFTVO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Blackadar, A., 1957: Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 38, 283290.

    • Search Google Scholar
    • Export Citation
  • Bosveld, F., cited 2014: Observations -> documentation: Cabauw observational program on landsurface-atmosphere interaction (2000 - today). [Available online at http://www.knmi.nl/~bosveld/.]

  • Businger, J. A., J. C. Wyngaard, Y. Izumi, and E. F. Bradley, 1971: Flux-profile relationships in the atmospheric boundary layer. J. Atmos. Sci., 28, 181189, doi:10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Derbyshire, S., 1999: Boundary-layer decoupling over cold surfaces as a physical boundary-instability. Bound.-Layer Meteor., 90, 297325, doi:10.1023/A:1001710014316.

    • Search Google Scholar
    • Export Citation
  • Donda, J., B. van de Wiel, I. van Hooijdonk, A. Moene, H. Jonker, G. van Heijst, and H. Clercx, 2015: Collapse of turbulence in stably stratified channel flow: A transient phenomenon. Quart. J. Roy. Meteor. Soc., in press.

  • Edwards, J. M., 2009: Radiative processes in the stable boundary layer: Part II. The development of the nocturnal boundary layer. Bound.-Layer Meteor., 131, 127146, doi:10.1007/s10546-009-9363-9.

    • Search Google Scholar
    • Export Citation
  • Flores, O., and J. Riley, 2011: Analysis of turbulence collapse in the stably stratified surface layer using direct numerical simulations. Bound.-Layer Meteor., 139, 241259, doi:10.1007/s10546-011-9588-2.

    • Search Google Scholar
    • Export Citation
  • Galperin, B., S. Sukoriansky, and P. S. Anderson, 2007: On the critical Richardson number in stably stratified turbulence. Atmos. Sci. Lett., 8, 6569, doi:10.1002/asl.153.

    • Search Google Scholar
    • Export Citation
  • Grachev, A., C. Fairall, P. Persson, E. Andreas, and P. Guest, 2005: Stable boundary-layer regimes: The SHEBA data. Bound.-Layer Meteor., 116, 201235, doi:10.1007/s10546-004-2729-0.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A., and H. de Bruin, 1988: Applied modeling of the nighttime surface energy balance over land. J. Appl. Meteor., 27, 689704, doi:10.1175/1520-0450(1988)027<0689:AMOTNS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jiménez, M., and J. Cuxart, 2005: Large-eddy simulations of the stable boundary layer using the standard Kolmogorov theory: Range of applicability. Bound.-Layer Meteor., 115, 241261, doi:10.1007/s10546-004-3470-4.

    • Search Google Scholar
    • Export Citation
  • King, J. C., and W. M. Connolley, 1997: Validation of the surface energy balance over the Antarctic ice sheets in the U.K. Meteorological Office Unified Climate Model. J. Climate, 10, 12731287, doi:10.1175/1520-0442(1997)010<1273:VOTSEB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • King, J. C., S. D. Mobbs, and N. R. Edwards, 1994: Surface boundary conditions in stably-stratified environmental flows. Stably Stratified Flows: Flow and Dispersion over Topography, I. P. Castro and N. J. Rockliff, Eds., Clarendon Press, 93–103.

  • Klipp, C. L., and L. Mahrt, 2004: Flux–gradient relationship, self-correlation and intermittency in the stable boundary layer. Quart. J. Roy. Meteor. Soc., 130, 20872103, doi:10.1256/qj.03.161.

    • Search Google Scholar
    • Export Citation
  • Łobocki, L., 2013: Analysis of vertical turbulent heat flux limit in stable conditions with a local equilibrium, turbulence closure model. Bound.-Layer Meteor., 148, 541555, doi:10.1007/s10546-013-9836-8.

    • Search Google Scholar
    • Export Citation
  • Louis, J., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17, 187202, doi:10.1007/BF00117978.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 2014: Stably stratified atmospheric boundary layers. Annu. Rev. Fluid Mech., 46, 2345, doi:10.1146/annurev-fluid-010313-141354.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., J. Sun, W. Blumen, T. Delany, and S. Oncley, 1998: Nocturnal boundary-layer regimes. Bound.-Layer Meteor., 88, 255278, doi:10.1023/A:1001171313493.

    • Search Google Scholar
    • Export Citation
  • Malhi, Y. S., 1995: The significance of the dual solutions for heat measured by the temperature fluctuation method in stable conditions. Bound.-Layer Meteor., 74, 389396, doi:10.1007/BF00712379.

    • Search Google Scholar
    • Export Citation
  • Mauritsen, T., G. Svensson, S. Zilitinkevich, I. Esau, L. Enger, and B. Grisogono, 2007: A total turbulent energy closure model for neutrally and stably stratified atmospheric boundary layers. J. Atmos. Sci., 64, 41134126, doi:10.1175/2007JAS2294.1.

    • Search Google Scholar
    • Export Citation
  • McNider, R., D. England, M. Friedman, and X. Shi, 1995: Predictability of the stable atmospheric boundary layer. J. Atmos. Sci., 52, 16021614, doi:10.1175/1520-0469(1995)052<1602:POTSAB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., Y. He, N. McFarlane, and A. Dai, 2011: The probability distribution of land surface winds. J. Climate, 24, 38923909, doi:10.1175/2011JCLI4106.1.

    • Search Google Scholar
    • Export Citation
  • Monin, A., and A. Obukhov, 1954: Basic laws of turbulent mixing in the atmosphere near the ground. Tr. Akad. Nauk., SSSR Geofiz. Inst.,24, 19631987.

    • Search Google Scholar
    • Export Citation
  • Monteith, J. L., 1981: Evaporation and surface temperature. Quart. J. Roy. Meteor. Soc., 107, 127, doi:10.1002/qj.49710745102.

  • Nieuwstadt, F., 2005: Direct numerical simulation of stable channel flow at large stability. Bound.-Layer Meteor., 116, 277299, doi:10.1007/s10546-004-2818-0.

    • Search Google Scholar
    • Export Citation
  • Sorbjan, Z., 2006: Local structure of turbulence in stably stratified boundary layers. J. Atmos. Sci., 63, 15261537, doi:10.1175/JAS3704.1.

    • Search Google Scholar
    • Export Citation
  • Stull, R., 2000: Meteorology for Scientists and Engineers. 2nd ed. Brooks/Cole, 502 pp.

  • Sun, J., and Coauthors, 2004: Atmospheric disturbances that generate intermittent turbulence in nocturnal boundary layers. Bound.-Layer Meteor., 110, 255279, doi:10.1023/A:1026097926169.

    • Search Google Scholar
    • Export Citation
  • Sun, J., L. Mahrt, R. Banta, and Y. Pichugina, 2012: Turbulence regimes and turbulence intermittency in the stable boundary layer during CASES-99. J. Atmos. Sci., 69, 338351, doi:10.1175/JAS-D-11-082.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, P. A., 1971: A note on the log-linear velocity profile in stable conditions. Quart. J. Roy. Meteor. Soc., 97, 326329, doi:10.1002/qj.49709741308.

    • Search Google Scholar
    • Export Citation
  • van de Wiel, B., A. Moene, G. Steeneveld, P. Baas, F. Bosveld, and A. Holtslag, 2003: Intermittent turbulence and oscillations in the stable boundary layer over land. Part III: A classification for observations during CASES-99. J. Atmos. Sci., 60, 25092522, doi:10.1175/1520-0469(2003)060<2509:ITITSB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • van de Wiel, B., A. Moene, G. Steeneveld, O. Hartogensis, and A. Holtslag, 2007: Predicting the collapse of turbulence in stably stratified boundary layers. Flow Turbul. Combust., 79, 251274, doi:10.1007/s10494-007-9094-2.

    • Search Google Scholar
    • Export Citation
  • van de Wiel, B., A. Moene, W. Ronde, and H. Jonker, 2008: Local similarity in the stable boundary layer and mixing-length approach: Consistency of concepts. Bound.-Layer Meteor., 128, 103116, doi:10.1007/s10546-008-9277-y.

    • Search Google Scholar
    • Export Citation
  • van de Wiel, B., A. Moene, and H. Jonker, 2012a: The cessation of continuous turbulence as precursor of the very stable nocturnal boundary layer. J. Atmos. Sci., 69, 30973115, doi:10.1175/JAS-D-12-064.1.

    • Search Google Scholar
    • Export Citation
  • van de Wiel, B., A. Moene, H. Jonker, P. Baas, S. Basu, J. Donda, J. Sun, and A. Holtslag, 2012b: The minimum wind speed for sustainable turbulence in the nocturnal boundary layer. J. Atmos. Sci., 69, 31163127, doi:10.1175/JAS-D-12-0107.1.

    • Search Google Scholar
    • Export Citation
  • van Ulden, A., and J. Wieringa, 1996: Atmospheric boundary layer research at Cabauw. Bound.-Layer Meteor., 78, 3969, doi:10.1007/BF00122486.

    • Search Google Scholar
    • Export Citation
  • Wang, J., and R. Bras, 2010: An extremum solution of the Monin–Obukhov similarity equations. J. Atmos. Sci., 67, 485499, doi:10.1175/2009JAS3117.1.

    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S. S., T. Elperin, N. Kleeorin, I. Rogachevskii, I. Esau, T. Mauritsen, and M. W. Miles, 2008: Turbulence energetics in stably stratified geophysical flows: Strong and weak mixing regimes. Quart. J. Roy. Meteor. Soc., 134, 793799, doi:10.1002/qj.264.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 292 84 9
PDF Downloads 203 43 5