Turbulent Erosion of Persistent Cold-Air Pools: Numerical Simulations

Neil P. Lareau Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

Search for other papers by Neil P. Lareau in
Current site
Google Scholar
PubMed
Close
and
John D. Horel Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

Search for other papers by John D. Horel in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

High-resolution idealized numerical simulations are used to examine the turbulent removal of cold-air pools commonly observed in mountain valleys and basins. A control simulation with winds aloft increasing from 0.5 to 20 m s−1 over 20 h combined with typical cold-air pool stratification illustrates the interplay over time of lowering of the top of the cold-air pool, spillover downstream of the valley from the upper reaches of the cold-air pool, wavelike undulations affecting the cold-air pool’s depth and stratification across the valley, and smaller temporal- and spatial-scale Kelvin–Helmholtz waves within the uppermost layers of the cold-air pool. The heat budget within the cold-air pool demonstrates the nearly compensating effects of vertical and horizontal advection combined with turbulent heating of the upper portion of the cold-air pool and cooling in the layers immediately above the cold-air pool. Sensitivities of turbulent mixing in cold-air pools to stratification and upstream terrain are examined. Although the characteristics of the turbulent mixing differ as the stratification and topography are modified, a bulk parameter [the cold-air pool Froude number (Fr)] characterizes the onset and amplification of turbulent mixing and the time of cold-air pool removal. When Fr > 1, Kelvin–Helmholtz waves and turbulent heat fluxes commence. Turbulent heat flux and wave activity increase until Fr = 2, after which the cold-air pool breaks down and is removed from the valley. The rate of cold-air pool removal is proportional to its strength; that is, a strong inversion generates larger heat fluxes once turbulent erosion is underway.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAS-D-14-0173.s1.

Corresponding author address: Neil Lareau, Department of Meteorology and Climate Sciences, San Jose State University, One Washington Square, San Jose, CA 95192-0104. E-mail: neil.lareau@sjsu.edu

Abstract

High-resolution idealized numerical simulations are used to examine the turbulent removal of cold-air pools commonly observed in mountain valleys and basins. A control simulation with winds aloft increasing from 0.5 to 20 m s−1 over 20 h combined with typical cold-air pool stratification illustrates the interplay over time of lowering of the top of the cold-air pool, spillover downstream of the valley from the upper reaches of the cold-air pool, wavelike undulations affecting the cold-air pool’s depth and stratification across the valley, and smaller temporal- and spatial-scale Kelvin–Helmholtz waves within the uppermost layers of the cold-air pool. The heat budget within the cold-air pool demonstrates the nearly compensating effects of vertical and horizontal advection combined with turbulent heating of the upper portion of the cold-air pool and cooling in the layers immediately above the cold-air pool. Sensitivities of turbulent mixing in cold-air pools to stratification and upstream terrain are examined. Although the characteristics of the turbulent mixing differ as the stratification and topography are modified, a bulk parameter [the cold-air pool Froude number (Fr)] characterizes the onset and amplification of turbulent mixing and the time of cold-air pool removal. When Fr > 1, Kelvin–Helmholtz waves and turbulent heat fluxes commence. Turbulent heat flux and wave activity increase until Fr = 2, after which the cold-air pool breaks down and is removed from the valley. The rate of cold-air pool removal is proportional to its strength; that is, a strong inversion generates larger heat fluxes once turbulent erosion is underway.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAS-D-14-0173.s1.

Corresponding author address: Neil Lareau, Department of Meteorology and Climate Sciences, San Jose State University, One Washington Square, San Jose, CA 95192-0104. E-mail: neil.lareau@sjsu.edu

Supplementary Materials

    • Supplemental Materials (AVI 49.10 MB)
Save
  • Banta, R. M., Y. L. Pichugina, and R. K. Newsom, 2003: Relationship between low-level jet properties and turbulence kinetic energy in the nocturnal stable boundary layer. J. Atmos. Sci., 60, 25492555, doi:10.1175/1520-0469(2003)060<2549:RBLJPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., Y. L. Pichugina, and W. A. Brewer, 2006: Turbulent velocity-variance profiles in the stable boundary layer generated by a nocturnal low-level jet. J. Atmos. Sci., 63, 27002719, doi:10.1175/JAS3776.1.

    • Search Google Scholar
    • Export Citation
  • Beard, J. D., C. Beck, R. Graham, S. Packham, M. Traphagan, R. Giles, and J. G. Morgan, 2012: Winter temperature inversions and emergency department visits for Asthma in Salt Lake County, Utah, 2003–2008. Environ. Health Perspect., 120, 13851390, doi:10.1289/ehp.1104349.

    • Search Google Scholar
    • Export Citation
  • Bell, R. C., and R. Thompson, 1980: Valley ventilation by cross winds. J. Fluid Mech., 96, 757767, doi:10.1017/S0022112080002340.

  • Flamant, C., and Coauthors, 2006: Föhn/CAP interactions in the Rhine valley during MAP IOP 15. Quart. J. Roy. Meteor. Soc., 132, 30353058, doi:10.1256/qj.06.36.

    • Search Google Scholar
    • Export Citation
  • Gillies, R. R., S.-Y. Wang, and M. R. Booth, 2010: Atmospheric scale interaction on wintertime Intermountain West low-level inversions. Wea. Forecasting,25, 1196–1210, doi:10.1175/2010WAF2222380.1.

  • Grainger, C., and R. N. Meroney, 1993: Dispersion in an open-cut coal mine in stably stratified flow. Bound.-Layer Meteor., 63, 117140, doi:10.1007/BF00705379.

    • Search Google Scholar
    • Export Citation
  • Gubser, S., and H. Richner, 2001: Investigations into mechanisms leading to the removal of the cold-pool in Foehn situations. Extended Abstracts, MAP-Meeting, Bavaria, Germany, MAP, 4 pp. [Available online at http://www.map.meteoswiss.ch/map-doc/NL15/gubser2.pdf.]

  • Kato, H., and O. M. Phillips, 1969: On the penetration of a turbulent layer into stratified fluid. J. Fluid Mech.,37, 643–665, doi:10.1017/S0022112069000784.

  • Lareau, N. P., and J. D. Horel, 2015: Dynamically induced displacements of a persistent cold-air pool. Bound.-Layer Meteor., 164, 291316, doi:10.1007/s10546-014-9968-5.

    • Search Google Scholar
    • Export Citation
  • Lareau, N. P., E. Crosman, C. D. Whiteman, J. D. Horel, S. W. Hoch, W. O. J. Brown, and T. W. Horst, 2013: The persistent cold-air pool study. Bull. Amer. Meteor. Soc., 94, 5163, doi:10.1175/BAMS-D-11-00255.1.

    • Search Google Scholar
    • Export Citation
  • Lee, J. T., R. E. Lawson Jr., and G. L. Marsh, 1987: Flow visualization experiments on stably stratified flow over ridges and valleys. Meteor. Atmos. Phys., 37, 183194, doi:10.1007/BF01042440.

    • Search Google Scholar
    • Export Citation
  • Lee, T. J., R. A. Pielke, R. C. Kessler, and J. Weaver, 1989: Influence of cold pools downstream of mountain barriers on downslope winds and flushing. Mon. Wea. Rev., 117, 20412058, doi:10.1175/1520-0493(1989)117<2041:IOCPDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Malek, E., T. Davis, R. S. Martin, and P. J. Silva, 2006: Meteorological and environmental aspects of one of the worst national air pollution episodes in Logan, Cache Valley, Utah, USA. Atmos. Res., 79, 108122, doi:10.1016/j.atmosres.2005.05.003.

    • Search Google Scholar
    • Export Citation
  • Nappo, C. J., 2002: An Introduction to Atmospheric Gravity Waves. Academic Press, 279 pp.

  • Newsom, R. K., and R. M. Banta, 2003: Shear-flow instability in the stable nocturnal boundary layer as observed by Doppler lidar during CASES-99. J. Atmos. Sci., 60, 1633, doi:10.1175/1520-0469(2003)060<0016:SFIITS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pataki, D. E., B. J. Tyler, R. E. Peterson, A. P. Nair, W. J. Steenburgh, and E. R. Pardyjak, 2005: Can carbon dioxide be used as a tracer of urban atmospheric transport? J. Geophys. Res., 110, D15102, doi:10.1029/2004JD005723.

    • Search Google Scholar
    • Export Citation
  • Pataki, D. E., D. R. Bowling, J. R. Ehleringer, J. M. Zobitz, 2006: High resolution atmospheric monitoring of urban carbon dioxide sources. Geophys. Res. Lett.,33, L03813, doi:10.1029/2005GL024822.

  • Petkovšek, Z., 1992: Turbulent dissipation of cold air lake in a basin. Meteor. Atmos. Phys., 47, 237245, doi:10.1007/BF01025620.

  • Petkovšek, Z., and T. Vrhovec, 1994: Note on the influences of inclined fog lakes on the air pollution in them and on the irradiance above them. Meteor. Z., 3, 227232.

    • Search Google Scholar
    • Export Citation
  • Pollard, R. T., P. B. Rhines, and R. O. R. Y. Thompson, 1973: The deepening of the wind-mixed layer. Geophys. Fluid Dyn., 3, 381404.

  • Pope, C. A., III, M. Ezzati, and D. W. Dockery, 2009: Fine-particulate air pollution and life expectancy in the United States. N. Engl. J. Med., 360, 376386, doi:10.1056/NEJMsa0805646.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., C. N. K. Mooers, and J. C. Van Leer, 1978: Observation and simulation of storm-induced mixed-layer deepening. J. Phys. Oceanogr., 8, 582599, doi:10.1175/1520-0485(1978)008<0582:OASOSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rakovec, J., J. Merše, S. Jernej, and B. Paradiž, 2002: Turbulent dissipation of the cold-air pool in a basin: Comparison of observed and simulated development. Meteor. Atmos. Phys., 79, 195213, doi:10.1007/s007030200003.

    • Search Google Scholar
    • Export Citation
  • Reddy, P. J., D. E. Barbarick, and R. D. Osterburg, 1995: Development of a statistical model for forecasting episodes of visibility degradation in the Denver metropolitan area. J. Appl. Meteor., 34, 616625, doi:10.1175/1520-0450(1995)034<0616:DOASMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reeves, H. D., and D. J. Stensrud, 2009: Synoptic-scale flow and valley cold pool evolution in the western United States. Wea. Forecasting, 24, 16251643, doi:10.1175/2009WAF2222234.1.

    • Search Google Scholar
    • Export Citation
  • Reinecke, P. A., and D. R. Durran, 2008: Estimating topographic blocking using a Froude number when the static stability is nonuniform. J. Atmos. Sci., 65, 10351048, doi:10.1175/2007JAS2100.1.

    • Search Google Scholar
    • Export Citation
  • Schnell, R. C., S. J. Oltmans, R. R. Neely, M. S. Endres, J. V. Molenar, and A. B. White, 2009: Rapid photochemical production of ozone at high concentrations in a rural site during winter. Nat. Geosci.,2, 120–122, doi:10.1038/ngeo415.

  • Sheridan, P., and S. Vosper, 2014: Dependence of valley cold air pools on valley scale. 16th Conf. on Mountain Meteorology, San Diego, CA, Amer. Meteor. Soc., 15.2. [Available online at https://ams.confex.com/ams/16MountMet/webprogram/Paper251427.html.]

  • Sheridan, P., S. Vosper, and A. R. Brown, 2014: Characteristics of cold pools observed in narrow valleys and dependence on external conditions. Quart. J. Roy. Meteor. Soc., 140, 715728, doi:10.1002/qj.2159.

    • Search Google Scholar
    • Export Citation
  • Silcox, G. D., K. E. Kelly, E. T. Crosman, C. D. Whiteman, and B. Allen, 2012: Wintertime PM2.5 concentrations in Utah’s Salt Lake Valley during persistent, multiday cold-air pools. Atmos. Environ., 46, 1724.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., cited 2014: A standard test set for nonhydrostatic dynamical cores of NWP models: Density current test case. [Available online at http://www.mmm.ucar.edu/projects/srnwp_tests/density/density.html.]

  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3_bw.pdf.]

  • Soontiens, N., N. Stastna, and M. L. Waite, 2013: Numerical simulations of waves over large crater topography in the atmosphere. J. Atmos. Sci., 70, 12161232, doi:10.1175/JAS-D-12-0221.1.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., R. B. Whilhelmson, L. J. Wicker, J. R. Andernson, and K. K. Droegemeier, 1993: Numerical solutions of a non-linear density current: A benchmark solution and comparisons. Int. J. Numer. Methods Fluids, 17,122, doi:10.1002/fld.1650170103.

    • Search Google Scholar
    • Export Citation
  • Strang, E. J., and H. J. S. Fernando, 2001a: Entrainment and mixing in stratified shear flows. J. Fluid Mech., 428, 349386, doi:10.1017/S0022112000002706.

    • Search Google Scholar
    • Export Citation
  • Strang, E. J., and H. J. S. Fernando, 2001b: Vertical mixing and transports through a stratified shear layer. J. Phys. Oceanogr., 31, 20262048, doi:10.1175/1520-0485(2001)031<2026:VMATTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sun, J., L. Mahrt, R. M. Banta, and Y. L. Pichugina, 2012: Turbulence regimes and turbulence intermittency in the stable boundary layer during CASES-99. J. Atmos. Sci.,69, 338–351, doi:10.1175/JAS-D-11-082.1.

  • Tampieri, F., and J. C. R. Hunt, 1985: Two-dimensional stratified fluid flow over valleys: Linear theory and laboratory investigation. Bound.-Layer Meteor., 32, 257279, doi:10.1007/BF00121882.

    • Search Google Scholar
    • Export Citation
  • Vosper, S. B., and A. R. Brown, 2008: Numerical simulations of sheltering in valleys: The formation of night time cold-air pools. Bound.-Layer Meteor., 127, 429448, doi:10.1007/s10546-008-9272-3.

    • Search Google Scholar
    • Export Citation
  • Vrhovec, T., and A. Hrabar, 1996: Numerical simulations of dissipation of dry temperature inversions in basins. Geofiz., 13, 8196.

  • Whiteman, C. D., X. Bian, and S. Zhong, 1999: Wintertime evolution of the temperature inversion in the Colorado Plateau basin. J. Appl. Meteor., 38, 11031117, doi:10.1175/1520-0450(1999)038<1103:WEOTTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., S. Zhong, W. J. Shaw, J. M. Hubbe, X. Bian, and J. Mittelstadt, 2001: Cold pools in the Columbia basin. Wea. Forecasting, 16, 432447, doi:10.1175/1520-0434(2001)016<0432:CPITCB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wolyn, P. G., and T. B. McKee, 1989: Deep stable layers in the intermountain western United States. Mon. Wea. Rev., 117, 461472, doi:10.1175/1520-0493(1989)117<0461:DSLITI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zängl, G., 2003: The impact of upstream blocking, drainage flow and the geostrophic pressure gradient on the persistence of cold-air pools. Quart. J. Roy. Meteor. Soc., 129, 117137, doi:10.1256/qj.02.99.

    • Search Google Scholar
    • Export Citation
  • Zängl, G., 2005: Winterime cold-air pools in the Bavarian Danube Valley basin: Data analysis and idealized numerical simulations. J. Appl. Meteor., 44, 19501971, doi:10.1175/JAM2321.1.

    • Search Google Scholar
    • Export Citation
  • Zardi, D., and C. D. Whiteman, 2013: Diurnal mountain wind systems. Mountain Weather Research and Forecasting: Recent Progress and Current Challenges, F. K. Chow, S. F. J. De Wekker, and B. Snyder, Eds., Springer, 35–119.

  • Zhong, S., C. D. Whiteman, X. Bian, W. J. Shaw, and J. M. Hubbe, 2001: Meteorological processes affecting evolution of a wintertime cold air pool in a large basin. Mon. Wea. Rev., 129, 26002613, doi:10.1175/1520-0493(2001)129<2600:MPATEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhong, S., X. Bian, and C. D. Whiteman, 2003: Time scale for cold-air pool breakup by turbulent erosion. Meteor. Z., 12, 22923, doi:10.1127/0941-2948/2003/0012-0231.

    • Search Google Scholar
    • Export Citation
  • Zhou, B., and F. K. Chow, 2014: Nested large-eddy simulations of the intermittently turbulent stable atmospheric boundary layer over real terrain. J. Atmos. Sci., 71, 10211039, doi:10.1175/JAS-D-13-0168.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 352 110 8
PDF Downloads 281 89 5