On the Local Available Energetics in a Moist Compressible Atmosphere

Jun Peng College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing, China

Search for other papers by Jun Peng in
Current site
Google Scholar
PubMed
Close
,
Lifeng Zhang College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing, China

Search for other papers by Lifeng Zhang in
Current site
Google Scholar
PubMed
Close
, and
Yun Zhang College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing, China

Search for other papers by Yun Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A new derivation of local available energetics for a fully compressible, nonhydrostatic, moist atmosphere is presented. The available energetics is defined relative to an arbitrary dry reference state in hydrostatic balance with stable stratification. By introducing the modified potential temperature, a positive-definite expression of the moist available potential energy (APE) is derived. The change of the moist APE must include the role of convection to function both as a source of latent heat and as an atmosphere dehumidifier. The sum of this moist APE and the available elastic energy (AEE) is the moist available energy. In the local energy cycle, the moist available energy is partly used to generate kinetic energy (KE) and partly used to lift the water vapor to the higher level where it precipitates, resulting in the increase of gravitational energy of moist species. The moist APE is converted into vertical KE through the buoyancy term; the vertical KE is converted into the AEE through the vertical perturbation pressure gradient term; and the AEE is converted into horizontal KE through the horizontal divergence/convergence term. In addition, there exist two adiabatic nonconservative processes, which act on the AEE and APE, respectively. A suitable choice of the reference state should make these two processes much less significant than the conversions between the available energy and KE. An alternative method is presented to construct such a reference state. Application to the idealized baroclinic atmosphere shows that this reference state is much more relevant to the local available energy analysis than the isothermal one.

Corresponding author address: Lifeng Zhang, College of Meteorology and Oceanography, PLA University of Science and Technology, Zhong Hua Men Wai, Nanjing 211101, China. E-mail: zhanglif@yeah.net

Abstract

A new derivation of local available energetics for a fully compressible, nonhydrostatic, moist atmosphere is presented. The available energetics is defined relative to an arbitrary dry reference state in hydrostatic balance with stable stratification. By introducing the modified potential temperature, a positive-definite expression of the moist available potential energy (APE) is derived. The change of the moist APE must include the role of convection to function both as a source of latent heat and as an atmosphere dehumidifier. The sum of this moist APE and the available elastic energy (AEE) is the moist available energy. In the local energy cycle, the moist available energy is partly used to generate kinetic energy (KE) and partly used to lift the water vapor to the higher level where it precipitates, resulting in the increase of gravitational energy of moist species. The moist APE is converted into vertical KE through the buoyancy term; the vertical KE is converted into the AEE through the vertical perturbation pressure gradient term; and the AEE is converted into horizontal KE through the horizontal divergence/convergence term. In addition, there exist two adiabatic nonconservative processes, which act on the AEE and APE, respectively. A suitable choice of the reference state should make these two processes much less significant than the conversions between the available energy and KE. An alternative method is presented to construct such a reference state. Application to the idealized baroclinic atmosphere shows that this reference state is much more relevant to the local available energy analysis than the isothermal one.

Corresponding author address: Lifeng Zhang, College of Meteorology and Oceanography, PLA University of Science and Technology, Zhong Hua Men Wai, Nanjing 211101, China. E-mail: zhanglif@yeah.net
Save
  • Andrews, D. G., 1981: A note on potential energy density in a stratified compressible fluid. J. Fluid Mech., 107, 227236, doi:10.1017/S0022112081001754.

    • Search Google Scholar
    • Export Citation
  • Augier, P., and E. Lindborg, 2013: A new formulation of the spectral energy budget of the atmosphere, with application to two high-resolution general circulation models. J. Atmos. Sci., 70, 22932308, doi:10.1175/JAS-D-12-0281.1.

    • Search Google Scholar
    • Export Citation
  • Bannon, P. R., 2005: Eulerian available energetics in moist atmospheres. J. Atmos. Sci., 62, 42384252, doi:10.1175/JAS3516.1.

  • Bannon, P. R., 2012: Atmospheric available energy. J. Atmos. Sci., 69, 37453762, doi:10.1175/JAS-D-12-059.1.

  • Boer, G. J., 1989: On exact and approximate energy equations in pressure coordinates. Tellus, 41A, 97108, doi:10.1111/j.1600-0870.1989.tb00368.x.

    • Search Google Scholar
    • Export Citation
  • Boer, G. J., and S. Lambert, 2008: The energy cycle in atmospheric models. Climate Dyn., 30, 371390, doi:10.1007/s00382-007-0303-4.

  • COESA, 1976: U.S. Standard Atmosphere, 1976. NOAA, 227 pp.

  • Dutton, J. A., and G. H. Fichtl, 1969: Approximate equations of motion for gases and liquids. J. Atmos. Sci., 26, 241254, doi:10.1175/1520-0469(1969)026<0241:AEOMFG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gao, S., X. Wang, and Y. Zhou, 2004: Generation of generalized moist potential vorticity in a frictionless and moist adiabatic flow. Geophys. Res. Lett., 31, L12113, doi:10.1029/2003GL019152.

    • Search Google Scholar
    • Export Citation
  • Goody, R., 2003: On the mechanical efficiency of deep, tropical convection. J. Atmos. Sci., 60, 28272832, doi:10.1175/1520-0469(2003)060<2827:OTMEOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holliday, D., and M. E. McIntyre, 1981: On potential energy density in an incompressible, stratified fluid. J. Fluid Mech., 107, 221225, doi:10.1017/S0022112081001742.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., W. C. Skamarock, and J. Dudhia, 2007: Conservative split-explicit time integration methods for the compressible nonhydrostatic equations. Mon. Wea. Rev., 135, 28972913, doi:10.1175/MWR3440.1.

    • Search Google Scholar
    • Export Citation
  • Kucharski, F., 1997: On the concept of exergy and available potential energy. Quart. J. Roy. Meteor. Soc., 123, 21412156, doi:10.1002/qj.49712354317.

    • Search Google Scholar
    • Export Citation
  • Kucharski, F., 2001: The interpretation of available potential energy as exergy applied to layers of a stratified atmosphere. Int. J. Exergy, 1, 2530, doi:10.1016/S1164-0235(01)00006-1.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7A, 157167, doi:10.1111/j.2153-3490.1955.tb01148.x.

    • Search Google Scholar
    • Export Citation
  • Marquet, P., 1991: On the concept of exergy and available enthalpy: Application to atmospheric energetics. Quart. J. Roy. Meteor. Soc., 117, 449475, doi:10.1002/qj.49711749903.

    • Search Google Scholar
    • Export Citation
  • Murakami, S., 2011: Atmospheric local energetics and energy interactions between mean and eddy fields. Part I: Theory. J. Atmos. Sci., 68, 760768, doi:10.1175/2010JAS3664.1.

    • Search Google Scholar
    • Export Citation
  • Pauluis, O., 2007: Sources and sinks of available potential energy in a moist atmosphere. J. Atmos. Sci., 64, 26272641, doi:10.1175/JAS3937.1.

    • Search Google Scholar
    • Export Citation
  • Pauluis, O., and I. M. Held, 2002a: Entropy budget of an atmosphere in radiative–convective equilibrium. Part I: Maximum work and frictional dissipation. J. Atmos. Sci., 59, 125139, doi:10.1175/1520-0469(2002)059<0125:EBOAAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pauluis, O., and I. M. Held, 2002b: Entropy budget of an atmosphere in radiative–convective equilibrium. Part II: Latent heat transport and moist processes. J. Atmos. Sci., 59, 140149, doi:10.1175/1520-0469(2002)059<0140:EBOAAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pauluis, O., V. Balaji, and I. M. Held, 2000: Frictional dissipation in a precipitating atmosphere. J. Atmos. Sci., 57, 989994, doi:10.1175/1520-0469(2000)057<0989:FDIAPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Springer-Verlag, 710 pp.

  • Peng, J., L. Zhang, Y. Zhang, and J. Zhu, 2013: A modified moist potential vorticity, its properties, and application. J. Geophys. Res. Atmos., 118, 12 999–13 007, doi:10.1002/2013JD020204.

    • Search Google Scholar
    • Export Citation
  • Peng, J., L. Zhang, Y. Luo, and C. Xiong, 2014: Mesoscale energy spectra of the mei-yu front system. Part II: Moist available potential energy spectra. J. Atmos. Sci., 71, 14101424, doi:10.1175/JAS-D-13-0319.1.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., and C. Snyder, 2007: Inertia–gravity waves spontaneously generated by jets and fronts. Part I: Different baroclinic life cycles. J. Atmos. Sci., 64, 25022520, doi:10.1175/JAS3953.1.

    • Search Google Scholar
    • Export Citation
  • Van Mieghem, J., 1956: The energy available in the atmosphere for conversion into kinetic energy. Beitr. Phys. Atmos., 29, 129142.

  • Waite, M. L., and C. Snyder, 2009: The mesoscale kinetic energy spectrum of a baroclinic life cycle. J. Atmos. Sci., 66, 883901, doi:10.1175/2008JAS2829.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 222 73 6
PDF Downloads 164 44 4