Impacts of Evaporation of Rainwater on Tropical Cyclone Structure and Intensity—A Revisit

Qingqing Li Pacific Typhoon Research Center, Key Laboratory of Meteorological Disaster of the Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, and State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, and Shanghai Typhoon Institute, China Meteorological Administration, Shanghai, China

Search for other papers by Qingqing Li in
Current site
Google Scholar
PubMed
Close
,
Yuqing Wang International Pacific Research Center, and Department of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Yuqing Wang in
Current site
Google Scholar
PubMed
Close
, and
Yihong Duan State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Yihong Duan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The impact of evaporation of rainwater on tropical cyclone (TC) intensity and structure is revisited in this study. Evaporative cooling can result in strong downdrafts and produce low–equivalent potential temperature air in the inflow boundary layer, particularly in the region outside the eyewall, significantly suppressing eyewall convection and reducing the final intensity of a TC. Different from earlier findings, results from this study show that outer rainbands still form but are short lived in the absence of evaporation. Evaporation of rainwater is shown to facilitate the formation of outer rainbands indirectly by reducing the cooling due to melting of ice particles outside the inner core, not by the cold-pool dynamics, as previously believed. Only exclusion of evaporation in the eyewall region or the rapid filamentation zone has a very weak effect on the inner-core size change of a TC, whereas how evaporation in the outer core affects the inner-core size depends on how active the inner rainbands are. More (less) active inner rainbands may lead to an increase (a decrease) in the inner-core size.

Corresponding author address: Dr. Qingqing Li, Shanghai Typhoon Institute, 166 Puxi Road, Shanghai 200030, China.E-mail: liqq@mail.typhoon.gov.cn

Abstract

The impact of evaporation of rainwater on tropical cyclone (TC) intensity and structure is revisited in this study. Evaporative cooling can result in strong downdrafts and produce low–equivalent potential temperature air in the inflow boundary layer, particularly in the region outside the eyewall, significantly suppressing eyewall convection and reducing the final intensity of a TC. Different from earlier findings, results from this study show that outer rainbands still form but are short lived in the absence of evaporation. Evaporation of rainwater is shown to facilitate the formation of outer rainbands indirectly by reducing the cooling due to melting of ice particles outside the inner core, not by the cold-pool dynamics, as previously believed. Only exclusion of evaporation in the eyewall region or the rapid filamentation zone has a very weak effect on the inner-core size change of a TC, whereas how evaporation in the outer core affects the inner-core size depends on how active the inner rainbands are. More (less) active inner rainbands may lead to an increase (a decrease) in the inner-core size.

Corresponding author address: Dr. Qingqing Li, Shanghai Typhoon Institute, 166 Puxi Road, Shanghai 200030, China.E-mail: liqq@mail.typhoon.gov.cn
Save
  • Barnes, G., E. Zipser, D. Jorgensen, and F. Marks, 1983: Mesoscale and convective structure of a hurricane rainband. J. Atmos. Sci., 40, 21252137, doi:10.1175/1520-0469(1983)040<2125:MACSOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bister, M., 2001: Effect of peripheral convection on tropical cyclone formation. J. Atmos. Sci., 58, 34633476, doi:10.1175/1520-0469(2001)058<3463:EOPCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bui, H. H., R. K. Smith, M. T. Montgomery, and J. Y. Peng, 2009: Balanced and unbalanced aspects of tropical cyclone intensification. Quart. J. Roy. Meteor. Soc., 135, 17151731, doi:10.1002/qj.502.

    • Search Google Scholar
    • Export Citation
  • Carrasco, C. A., C. W. Landsea, and Y.-L. Lin, 2014: The influence of tropical cyclone size on its intensification. Wea. Forecasting, 29, 582590, doi:10.1175/WAF-D-13-00092.1.

    • Search Google Scholar
    • Export Citation
  • Carrio, G. G., and W. R. Cotton, 2011: Investigations of aerosol impacts on hurricanes: Virtual seeding flights. Atmos. Chem. Phys., 11, 25572567, doi:10.5194/acp-11-2557-2011.

    • Search Google Scholar
    • Export Citation
  • Chan, K. T. F., and J. C. L. Chan, 2012: Size and strength of tropical cyclones as inferred from QuikSCAT data. Mon. Wea. Rev., 140, 811824, doi:10.1175/MWR-D-10-05062.1.

    • Search Google Scholar
    • Export Citation
  • Chan, K. T. F., and J. C. L. Chan, 2013: Angular momentum transports and synoptic flow patterns associated with tropical cyclone size change. Mon. Wea. Rev., 141, 39854007, doi:10.1175/MWR-D-12-00204.1.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., G. M. Krall, and G. G. Carrió, 2012: Potential indirect effects of aerosol on tropical cyclone intensity: Convective fluxes and cold-pool activity. Tropical Cyclone Res. Rev., 1, 293306.

    • Search Google Scholar
    • Export Citation
  • Didlake, A. C., and R. A. Houze, 2009: Convective-scale downdrafts in the principal rainband of Hurricane Katrina (2005). Mon. Wea. Rev., 137, 32693293, doi:10.1175/2009MWR2827.1.

    • Search Google Scholar
    • Export Citation
  • Didlake, A. C., and R. A. Houze, 2013a: Convective-scale variations in the inner-core rainbands of a tropical cyclone. J. Atmos. Sci., 70, 504523, doi:10.1175/JAS-D-12-0134.1.

    • Search Google Scholar
    • Export Citation
  • Didlake, A. C., and R. A. Houze, 2013b: Dynamics of the stratiform sector of a tropical cyclone rainband. J. Atmos. Sci., 70, 18911911, doi:10.1175/JAS-D-12-0245.1.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and J. B. Klemp, 1983: A compressible model for the simulation of moist mountain waves. Mon. Wea. Rev., 111, 23412361, doi:10.1175/1520-0493(1983)111<2341:ACMFTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., T. L. Gardner, M. C. Link, and K. C. Smith, 2012: Surface cold pools in the outer rainbands of Tropical Storm Hanna (2008) near landfall. Mon. Wea. Rev., 140, 471491, doi:10.1175/MWR-D-11-00099.1.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, doi:10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frisius, T., and T. Hasselbeck, 2009: The effect of latent cooling processes in tropical cyclone simulations. Quart. J. Roy. Meteor. Soc., 135, 17321749, doi:10.1002/qj.495.

    • Search Google Scholar
    • Export Citation
  • Fudeyasu, H., and Y. Wang, 2011: Balanced contribution to the intensification of a tropical cyclone simulated in TCM4: Outer-core spinup process. J. Atmos. Sci., 68, 430449, doi:10.1175/2010JAS3523.1.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., E. Ruprecht, and R. Phelps, 1975: Relative humidity in tropical weather systems. Mon. Wea. Rev., 103, 685690, doi:10.1175/1520-0493(1975)103<0685:RHITWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hence, D. A., and R. A. Houze, 2008: Kinematic structure of convective-scale elements in the rainbands of Hurricanes Katrina and Rita (2005). J. Geophys. Res., 113, D15108, doi:10.1029/2007JD009429.

    • Search Google Scholar
    • Export Citation
  • Hence, D. A., and R. A. Houze, 2012: Vertical structure of tropical cyclone rainbands as seen by the TRMM precipitation radar. J. Atmos. Sci., 69, 26442661, doi:10.1175/JAS-D-11-0323.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr. , 2010: Clouds in tropical cyclones. Mon. Wea. Rev., 138, 293344, doi:10.1175/2009MWR2989.1.

  • Knaff, J. A., S. P. Longmore, and D. A. Molenar, 2014: An objective satellite-based tropical cyclone size climatology. J. Climate, 27, 455476, doi:10.1175/JCLI-D-13-00096.1.

    • Search Google Scholar
    • Export Citation
  • Langland, R. H., and C. S. Liou, 1996: Implementation of an E–ε parameterization of vertical subgrid-scale mixing in a regional model. Mon. Wea. Rev., 124, 905918, doi:10.1175/1520-0493(1996)124<0905:IOAPOV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, Q., and Y. Wang, 2012a: Formation and quasi-periodic behavior of outer spiral rainbands in a numerically simulated tropical cyclone. J. Atmos. Sci., 69, 9971020, doi:10.1175/2011JAS3690.1.

    • Search Google Scholar
    • Export Citation
  • Li, Q., and Y. Wang, 2012b: A comparison of inner and outer spiral rainbands in a numerically simulated tropical cyclone. Mon. Wea. Rev., 140, 27822805, doi:10.1175/MWR-D-11-00237.1.

    • Search Google Scholar
    • Export Citation
  • Li, Q., Y. Wang, and Y. Duan, 2014: Effects of diabatic heating/cooling in the rapid filamentation zone on structure and intensity of a simulated tropical cyclone. J. Atmos. Sci., 71, 31443163, doi:10.1175/JAS-D-13-0312.1.

    • Search Google Scholar
    • Export Citation
  • Lord, S. J., H. E. Willoughby, and J. M. Piotrowicz, 1984: Role of a parameterized ice-phase microphysics in an axisymmetric, nonhydrostatic tropical cyclone model. J. Atmos. Sci., 41, 28362848, doi:10.1175/1520-0469(1984)041<2836:ROAPIP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Möller, J. D., and L. J. Shapiro, 2002: Balanced contributions to the intensification of Hurricane Opal as diagnosed from a GFDL model forecast. Mon. Wea. Rev., 130, 18661881, doi:10.1175/1520-0493(2002)130<1866:BCTTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moon, Y., and D. S. Nolan, 2010: The dynamic response of the hurricane wind field to spiral rainband heating. J. Atmos. Sci., 67, 17791805, doi:10.1175/2010JAS3171.1.

    • Search Google Scholar
    • Export Citation
  • Moon, Y., and D. S. Nolan, 2015: Spiral rainbands in a numerical simulation of Hurricane Bill (2009). Part I: Structures and comparisons to observations. J. Atmos. Sci., 72, 164190, doi:10.1175/JAS-D-14-0058.1.

    • Search Google Scholar
    • Export Citation
  • Pattnaik, S., and T. N. Krishnamurti, 2007: Impact of cloud microphysical processes on hurricane intensity. Part 2: Sensitivity experiments. Meteor. Atmos. Phys., 97, 127147, doi:10.1007/s00703-006-0248-x.

    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., and H. E. Willoughby, 2009: Diabatically induced secondary flows in tropical cyclones. Part I: Quasi-steady forcing. Mon. Wea. Rev., 137, 805821, doi:10.1175/2008MWR2657.1.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., 1990a: Boundary layer structure and dynamics in outer hurricane rainbands. Part I: Mesoscale rainfall and kinematic structure. Mon. Wea. Rev., 118, 891917, doi:10.1175/1520-0493(1990)118<0891:BLSADI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., 1990b: Boundary layer structure and dynamics in outer hurricane rainbands. Part II: Downdraft modification and mixed layer recovery. Mon. Wea. Rev., 118, 918938, doi:10.1175/1520-0493(1990)118<0918:BLSADI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Riehl, H., and J. S. Malkus, 1961: Some aspects of Hurricane Daisy, 1958. Tellus, 13, 181213, doi:10.1111/j.2153-3490.1961.tb00077.x.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and K. A. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542561, doi:10.1175/1520-0469(1987)044<0542:AAITFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sawada, M., and T. Iwasaki, 2010a: Impacts of evaporation from raindrops on tropical cyclones. Part I: Evolution and axisymmetric structure. J. Atmos. Sci., 67, 7183, doi:10.1175/2009JAS3040.1.

    • Search Google Scholar
    • Export Citation
  • Sawada, M., and T. Iwasaki, 2010b: Impacts of evaporation from raindrops on tropical cyclones. Part II: Features of rainbands and asymmetric structure. J. Atmos. Sci., 67, 8496, doi:10.1175/2009JAS3195.1.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378394, doi:10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2001: An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model: TCM3. Part I: Model description and control experiment. Mon. Wea. Rev., 129, 13701394, doi:10.1175/1520-0493(2001)129<1370:AESOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2002: An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model: TCM3. Part II: Model refinements and sensitivity to cloud microphysics parameterization. Mon. Wea. Rev., 130, 30223036, doi:10.1175/1520-0493(2002)130<3022:AESOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2007: A multiply nested, movable mesh, fully compressible, nonhydrostatic tropical cyclone model—TCM4: Model description and development of asymmetries without explicit asymmetric forcing. Meteor. Atmos. Phys., 97, 93116, doi:10.1007/s00703-006-0246-z.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2008a: Rapid filamentation zone in a numerically simulated tropical cyclone. J. Atmos. Sci., 65, 11581181, doi:10.1175/2007JAS2426.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2008b: Structure and formation of an annular hurricane simulated in a fully compressible, nonhydrostatic model—TCM4. J. Atmos. Sci., 65, 15051527, doi:10.1175/2007JAS2528.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66, 12501273, doi:10.1175/2008JAS2737.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and J. Xu, 2010: Energy production, frictional dissipation, and maximum intensity of a numerically simulated tropical cyclone. J. Atmos. Sci., 67, 97116, doi:10.1175/2009JAS3143.1.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., H.-L. Jin, S. J. Lord, and J. M. Piotrowicz, 1984: Hurricane structure and evolution as simulated by an axisymmetric, nonhydrostatic numerical model. J. Atmos. Sci., 41, 11691186, doi:10.1175/1520-0469(1984)041<1169:HSAEAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xu, J., and Y. Wang, 2010a: Sensitivity of tropical cyclone inner core size and intensity to the radial distribution of surface entropy flux. J. Atmos. Sci., 67, 18311852, doi:10.1175/2010JAS3387.1.

    • Search Google Scholar
    • Export Citation
  • Xu, J., and Y. Wang, 2010b: Sensitivity of the simulated tropical cyclone inner-core size to the initial vortex size. Mon. Wea. Rev., 138, 41354157, doi:10.1175/2010MWR3335.1.

    • Search Google Scholar
    • Export Citation
  • Yamasaki, M., 1983: A further study of the tropical cyclone without parameterizing the effects of cumulus convection. Pap. Meteor. Geophys., 34, 221260, doi:10.2467/mripapers.34.221.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., 1961: A detailed analysis of typhoon formation. J. Meteor. Soc. Japan, 39, 187214.

  • Yang, B., Y. Wang, and B. Wang, 2007: The effect of internally generated inner-core asymmetries on tropical cyclone potential intensity. J. Atmos. Sci., 64, 11651188, doi:10.1175/JAS3971.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, T., and D.-L. Zhang, 2006: A numerical study of Hurricane Erin (2001). Part II: Sensitivity to varying cloud microphysical processes. J. Atmos. Sci., 63, 109126, doi:10.1175/JAS3599.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, Z., and P. Zhu, 2014: The role of outer rainband convection in governing the eyewall replacement cycle in numerical simulations of tropical cyclones. J. Geophys. Res. Atmos., 119, 80498072, doi:10.1002/2014JD021899.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1005 406 45
PDF Downloads 635 194 13