Turbulent Mixing in Shallow Trade Wind Cumuli: Dependence on Cloud Life Cycle

T. Schmeissner * Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany

Search for other papers by T. Schmeissner in
Current site
Google Scholar
PubMed
Close
,
R. A. Shaw Department of Physics, Michigan Technological University, Houghton, Michigan

Search for other papers by R. A. Shaw in
Current site
Google Scholar
PubMed
Close
,
J. Ditas Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany

Search for other papers by J. Ditas in
Current site
Google Scholar
PubMed
Close
,
F. Stratmann * Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany

Search for other papers by F. Stratmann in
Current site
Google Scholar
PubMed
Close
,
M. Wendisch Leipzig Institute for Meteorology, Leipzig, Germany

Search for other papers by M. Wendisch in
Current site
Google Scholar
PubMed
Close
, and
H. Siebert * Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany

Search for other papers by H. Siebert in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Helicopter-borne observations of the impact of turbulent mixing and cloud microphysical properties in shallow trade wind cumuli are presented. The measurements were collected during the Cloud, Aerosol, Radiation and Turbulence in the Trade Wind Regime over Barbados (CARRIBA) project. Basic meteorological parameters (3D wind vector, air temperature, and relative humidity), cloud condensation nuclei concentrations, and cloud microphysical parameters (droplet number, size distribution, and liquid water content) are measured by the Airborne Cloud Turbulence Observation System (ACTOS), which is fixed by a 160-m-long rope underneath a helicopter flying with a true airspeed of approximately 20 m sāˆ’1. Clouds at different evolutionary stages were sampled. A total of 300 clouds are classified into actively growing, decelerated, and dissolving clouds. The mixing process of these cloud categories is investigated by correlating the cloud droplet number concentration and cubed droplet mean volume diameter. A significant tendency to more inhomogeneous mixing with increasing cloud lifetime is observed. Furthermore, the mixing process and its effects on droplet number concentration, droplet size, and cloud liquid water content are statistically evaluated. It is found that, in dissolving clouds, liquid water content and droplet number concentration are decreased by about 50% compared to actively growing clouds. Conversely, the droplet size remains almost constant, which can be attributed to the existence of a humid shell around the cloud that prevents cloud droplets from rapid evaporation after entrainment of premoistened air. Moreover, signs of secondary activation are found, which results in a more difficult interpretation of observed mixing diagrams.

Denotes Open Access content.

Corresponding author address: T. Schmeissner, Leibniz Institute for Tropospheric Research (TROPOS), Permoserstr. 15, 04318 Leipzig, Germany. E-mail: tina.schmeissner@tropos.de

Abstract

Helicopter-borne observations of the impact of turbulent mixing and cloud microphysical properties in shallow trade wind cumuli are presented. The measurements were collected during the Cloud, Aerosol, Radiation and Turbulence in the Trade Wind Regime over Barbados (CARRIBA) project. Basic meteorological parameters (3D wind vector, air temperature, and relative humidity), cloud condensation nuclei concentrations, and cloud microphysical parameters (droplet number, size distribution, and liquid water content) are measured by the Airborne Cloud Turbulence Observation System (ACTOS), which is fixed by a 160-m-long rope underneath a helicopter flying with a true airspeed of approximately 20 m sāˆ’1. Clouds at different evolutionary stages were sampled. A total of 300 clouds are classified into actively growing, decelerated, and dissolving clouds. The mixing process of these cloud categories is investigated by correlating the cloud droplet number concentration and cubed droplet mean volume diameter. A significant tendency to more inhomogeneous mixing with increasing cloud lifetime is observed. Furthermore, the mixing process and its effects on droplet number concentration, droplet size, and cloud liquid water content are statistically evaluated. It is found that, in dissolving clouds, liquid water content and droplet number concentration are decreased by about 50% compared to actively growing clouds. Conversely, the droplet size remains almost constant, which can be attributed to the existence of a humid shell around the cloud that prevents cloud droplets from rapid evaporation after entrainment of premoistened air. Moreover, signs of secondary activation are found, which results in a more difficult interpretation of observed mixing diagrams.

Denotes Open Access content.

Corresponding author address: T. Schmeissner, Leibniz Institute for Tropospheric Research (TROPOS), Permoserstr. 15, 04318 Leipzig, Germany. E-mail: tina.schmeissner@tropos.de
Save
  • Ackerman, B., 1958: Turbulence around tropical cumuli. J. Meteor., 15, 69–74, doi:10.1175/1520-0469(1958)015<0069:TATC>2.0.CO;2.

  • Arabas, S., H. Pawlowska, and W. W. Grabowski, 2009: Effective radius and droplet spectral width from in-situ aircraft observations in trade-wind cumuli during RICO. Geophys. Res. Lett.,36, L11803, doi:10.1029/2009GL038257.

  • Austin, P. H., M. B. Baker, A. M. Blyth, and J. B. Jensen, 1985: Small-scale variability in warm continental cumulus clouds. J. Atmos. Sci., 42, 1123–1138, doi:10.1175/1520-0469(1985)042<1123:SSVIWC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baker, M. B., and J. Latham, 1979: The evolution of droplet spectra and the rate of production of embryonic raindrops in small cumulus clouds. J. Atmos. Sci., 36, 1612–1615, doi:10.1175/1520-0469(1979)036<1612:TEODSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baker, M. B., R. G. Corbin, and J. Latham, 1980: The influence of entrainment on the evolution of cloud droplet spectra. I: A model of inhomogeneous mixing. Quart. J. Roy. Meteor. Soc., 106, 581–598, doi:10.1002/qj.49710644914.

    • Search Google Scholar
    • Export Citation
  • Baker, M. B., R. E. Breidenthal, T. W. Choularton, and J. Latham, 1984: The effects of turbulent mixing in clouds. J. Atmos. Sci., 41, 299–304, doi:10.1175/1520-0469(1984)041<0299:TEOTMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Blyth, A. M., and J. Latham, 1990: Airborne studies of the altitudinal variability of the microphysical structure of small, ice-free, montanan cumulus clouds. Quart. J. Roy. Meteor. Soc., 116, 1405–1423, doi:10.1002/qj.49711649608.

    • Search Google Scholar
    • Export Citation
  • Brenguier, J.-L., and L. Chaumat, 2001: Droplet spectra broadening in cumulus clouds. Part I: Broadening in adiabatic cores. J. Atmos. Sci., 58, 628–641, doi:10.1175/1520-0469(2001)058<0628:DSBICC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brenguier, J.-L., H. Pawlowska, L. Schüller, R. Preusker, J. Fischer, and Y. Fouquart, 2000: Radiative properties of boundary layer clouds: Droplet effective radius versus number concentration. J. Atmos. Sci., 57, 803–821, doi:10.1175/1520-0469(2000)057<0803:RPOBLC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., J. R. McCaa, and H. Grenier, 2004: A new parametrization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part I: Description and 1D results. Mon. Wea. Rev., 132, 864–882, doi:10.1175/1520-0493(2004)132<0864:ANPFSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Burnet, F., and J.-L. Brenguier, 2007: Observational study of the entrainment-mixing process in warm convective clouds. J. Atmos. Sci., 64, 1995–2011, doi:10.1175/JAS3928.1.

    • Search Google Scholar
    • Export Citation
  • Chuang, P. Y., E. W. Saw, J. D. Small, R. A. Shaw, C. M. Sipperley, G. A. Payne, and W. Bachalo, 2008: Airborne phase Doppler interferometry for cloud microphysical measurements. Aerosol Sci. Technol., 42, 685–703, doi:10.1080/02786820802232956.

    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., 1989: Effects of variable droplet growth histories on droplet size distributions. Part I: Theory. J. Atmos. Sci., 46, 1301–1311, doi:10.1175/1520-0469(1989)046<1301:EOVDGH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ditas, F., 2014: Microphysical properties of aerosol particles in the trade wind regime and their influence on the number concentration of activated particles in trade wind cumulus clouds. Ph.D. thesis, University of Leipzig, 113 pp.

  • Feingold, G., L. A. Remer, J. Ramaprasad, and Y. J. Kaufman, 2001: Analysis of smoke impact on clouds in Brazilian biomass burning regions: An extension of Twomey’s approach. J. Geophys. Res., 106, 22 907–22 922, doi:10.1029/2001JD000732.

    • Search Google Scholar
    • Export Citation
  • Gerber, H., 2006: Entrainment, mixing, and microphysics in RICO cumulus. 12th Conf. on Cloud Physics, Madison, WI, Amer. Meteor. Soc., 14.2A. [Available online at https://ams.confex.com/ams/pdfpapers/109676.pdf.]

  • Gerber, H., G. M. Frick, J. B. Jensen, and J. G. Hudson, 2008: Entrainment, mixing, and microphysics in trade-wind cumulus. J. Meteor. Soc. Japan, 86A, 87–106, doi:10.2151/jmsj.86A.87.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W., 2006: Indirect impact of atmospheric aerosols in idealized simulations of convective–radiative quasi equilibrium. J. Climate, 19, 4664–4682, doi:10.1175/JCLI3857.1.

    • Search Google Scholar
    • Export Citation
  • Haman, K. E., A. Makulski, S. P. Malinowski, and R. Busen, 1997: A new ultrafast thermometer for airborne measurements in clouds. J. Atmos. Oceanic Technol., 14, 217–227, doi:10.1175/1520-0426(1997)014<0217:ANUTFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heus, T., and H. J. J. Jonker, 2008: Subsiding shells around shallow cumulus clouds. J. Atmos. Sci., 65, 1003–1018, doi:10.1175/2007JAS2322.1.

    • Search Google Scholar
    • Export Citation
  • Hill, T. A., and T. W. Choularton, 1985: An airborne study of the microphysical structure of cumulus clouds. Quart. J. Roy. Meteor. Soc., 111, 517–544, doi:10.1002/qj.49711146813.

    • Search Google Scholar
    • Export Citation
  • Jarecka, D., W. W. Grabowski, H. Morrison, and H. Pawlowska, 2013: Homogeneity of the subgrid-scale turbulent mixing in large-eddy simulation of shallow convection. J. Atmos. Sci.,70, 2751–2767, doi:10.1175/JAS-D-13-042.1.

  • Jensen, J. B., and M. B. Baker, 1989: A simple model for droplet spectra evolution during turbulent mixing. J. Atmos. Sci., 46, 2812–2829, doi:10.1175/1520-0469(1989)046<2812:ASMODS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jensen, J. B., P. H. Austin, M. B. Baker, and A. M. Blyth, 1985: Turbulent mixing, spectral evolution and dynamics in a warm cumulus cloud. J. Atmos. Sci., 42, 173–192, doi:10.1175/1520-0469(1985)042<0173:TMSEAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 2784–2802, doi:10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Katzwinkel, J., H. Siebert, T. Heus, and R. A. Shaw, 2014: Measurements of turbulent mixing and subsiding shells in trade wind cumuli. J. Atmos. Sci.,71, 2810–2822, doi:10.1175/JAS-D-13-0222.1.

  • Korolev, A. V., and I. P. Mazin, 2003: Supersaturation of water vapor in clouds. J. Atmos. Sci., 60, 2957–2974, doi:10.1175/1520-0469(2003)060<2957:SOWVIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krueger, S., 2008: Fine-scale modeling of entrainment and mixing of cloudy and clear air. Extended Abstract, 15th Int. Conf. on Clouds and Precipitation, Cancun, Mexico, Int. Commission on Clouds and Precipitation, P1.10. [Available online at http://cabernet.atmosfcu.unam.mx/ICCP-2008/abstracts/Program_on_line/Poster_01/Krueger_extended.pdf.]

  • Kumar, B., J. Schumacher, and R. A. Shaw, 2013: Cloud microphysical effects of turbulent mixing and entrainment. Theor. Comput. Fluid Dyn., 27, 361–376, doi:10.1007/s00162-012-0272-z.

    • Search Google Scholar
    • Export Citation
  • Laird, N. F., 2005: Humidity halos surrounding small cumulus clouds in a tropical environment. J. Atmos. Sci., 62, 3420–3425, doi:10.1175/JAS3538.1.

    • Search Google Scholar
    • Export Citation
  • Lehmann, K., H. Siebert, and R. A. Shaw, 2009: Homogeneous and inhomogeneous mixing in cumulus clouds: Dependence on local turbulence structure. J. Atmos. Sci., 66, 3641–3659, doi:10.1175/2009JAS3012.1.

    • Search Google Scholar
    • Export Citation
  • Lu, M.-L., J. Wang, A. Freedman, H. H. Jonsson, R. C. Flagan, R. A. McClatchey, and J. H. Seinfeld, 2003: Analysis of humidity halos around trade wind cumulus clouds. J. Atmos. Sci., 60, 1041–1059, doi:10.1175/1520-0469(2003)60<1041:AOHHAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Malkus, J. S., 1949: Effects of wind shear on some aspects of convection. Eos, Trans. Amer. Geophys. Union, 30, 19–25, doi:10.1029/TR030i001p00019.

    • Search Google Scholar
    • Export Citation
  • Nuijens, L., I. Serikov, L. Hirsch, K. Lonitz, and B. Stevens, 2014: The distribution and variability of low-level cloud in the North Atlantic trades. Quart. J. Roy. Meteor. Soc., 140, 2364–2374, doi:10.1002/qj.2307.

    • Search Google Scholar
    • Export Citation
  • Paluch, I. R., and C. A. Knight, 1984: Mixing and the evolution of cloud droplet size spectra in a vigorous continental cumulus. J. Atmos. Sci., 41, 1801–1815, doi:10.1175/1520-0469(1984)041<1801:MATEOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Paluch, I. R., and D. G. Baumgardner, 1989: Entrainment and fine-scale mixing in a continental convective cloud. J. Atmos. Sci., 46, 261–278, doi:10.1175/1520-0469(1989)046<0261:EAFSMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pawlowska, H., J.-L. Brenguier, and F. Burnet, 2000: Microphysical properties of stratocumulus clouds. Atmos. Res., 55, 15–33, doi:10.1016/S0169-8095(00)00054-5.

    • Search Google Scholar
    • Export Citation
  • Perry, K. D., and P. V. Hobbs, 1996: Influences of isolated clouds on the humidity of their surroundings. J. Atmos. Sci., 53, 159–174, doi:10.1175/1520-0469(1996)053<0159:IOICCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pontikis, C., and E. Hicks, 1993: Droplet activation as related to entrainment and mixing in warm tropical maritime clouds. J. Atmos. Sci., 50, 1888–1896, doi:10.1175/1520-0469(1993)050<1888:DAARTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Riehl, H., T. Yeh, J. S. Malkus, and N. la Seur, 1951: The north-east trade of the Pacific Ocean. Quart. J. Roy. Meteor. Soc., 77, 598–626, doi:10.1002/qj.49707733405.

    • Search Google Scholar
    • Export Citation
  • Roberts, G. C., and A. Nenes, 2005: A continuous-flow streamwise thermal-gradient CCN chamber for atmospheric measurements. Aerosol Sci. Technol., 39, 206–221, doi:10.1080/027868290913988.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics. 3rd ed. Pergamon Press, 293 pp.

  • Siebert, H., H. Franke, K. Lehmann, R. Maser, E. W. Saw, D. Schell, R. A. Shaw, and M. Wendisch, 2006a: Probing finescale dynamics and microphysics of clouds with helicopter-borne measurements. Bull. Amer. Meteor. Soc., 87, 1727–1738, doi:10.1175/BAMS-87-12-1727.

    • Search Google Scholar
    • Export Citation
  • Siebert, H., K. Lehmann, M. Wendisch, and R. Shaw, 2006b: Small-scale turbulence in clouds. 12th Conf. on Cloud Physics, Madison, WI, Amer. Meteor. Soc., 12.1. [Available online at https://ams.confex.com/ams/Madison2006/techprogram/paper_112465.htm.]

  • Siebert, H., and Coauthors, 2013: The fine-scale structure of the trade wind cumuli over Barbados—An introduction to the CARRIBA project. Atmos. Chem. Phys., 13, 10 061–10 077, doi:10.5194/acp-13-10061-2013.

    • Search Google Scholar
    • Export Citation
  • Slawinska, J., W. Grabowski, H. Pawlowska, and H. Morrison, 2012: Droplet activation and mixing in large-eddy simulation of a shallow cumulus field. J. Atmos. Sci., 69, 444–462, doi:10.1175/JAS-D-11-054.1.

    • Search Google Scholar
    • Export Citation
  • Small, J. D., P. Y. Chuang, and H. H. Jonsson, 2013: Microphysical imprint of entrainment in warm cumulus. Tellus, 65B, 19 922, doi:10.3402/tellusb.v65i0.19922.

    • Search Google Scholar
    • Export Citation
  • Squires, P., 1958: Penetrative downdraughts in cumuli. Tellus, 10A, 381–389, doi:10.1111/j.2153-3490.1958.tb02025.x.

  • Squires, P., and J. Warner, 1957: Some measurement in the orographic cloud of the island of Hawaii and in trade wind cumuli. Tellus, 9A, 475–494, doi:10.1111/j.2153-3490.1957.tb01909.x.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., 2005: Atmospheric moist convection. Annu. Rev. Earth Planet. Sci., 33, 605–643, doi:10.1146/annurev.earth.33.092203.122658.

    • Search Google Scholar
    • Export Citation
  • Stith, J., and M. Politovich, 1989: Observations of the effects of entrainment and mixing on the droplet size spectra in a small cumulus. J. Atmos. Sci., 46, 908–919, doi:10.1175/1520-0469(1989)046<0908:OOTEOE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1947: Entrainment of air into a cumulus cloud. J. Meteor., 4, 91–94, doi:10.1175/1520-0469(1947)004<0091:EOAIAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Su, C.-W., K. Krueger, P. A. McMurtry, and P. H. Austin, 1998: Linear eddy modeling of droplet spectral evolution during entrainment and mixing in cumulus clouds. Atmos. Res., 47–48, 41–58, doi:10.1016/S0169-8095(98)00039-8.

    • Search Google Scholar
    • Export Citation
  • Telford, J. W., and J. Warner, 1962: On the measurement from an aircraft of bouyancy and vertical air velocity in cloud. J. Atmos. Sci., 19, 415–423, doi:10.1175/1520-0469(1962)019<0415:OTMFAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Telford, J. W., and S. K. Chai, 1980: A new aspect of condensation theory. Pure Appl. Geophys., 118, 720–742, doi:10.1007/BF01593025.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 1779–1800, doi:10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Topping, D., P. Connolly, and G. McFiggans, 2013: Cloud droplet number enhanced by co-condensation of organic vapours. Nature Geosci.,6, 443–446, doi:10.1038/ngeo1809.

  • Warner, J., 1955: The water content of cumuliform clouds. Tellus, 7A, 449–457, doi:10.1111/j.2153-3490.1955.tb01183.x.

  • Warner, J., 1969: The microstructure of cumulus cloud. Part I: General features of the droplet spectrum. J. Atmos. Sci.,26, 1049–1059, doi:10.1175/1520-0469(1969)026<1049:TMOCCP>2.0.CO;2.

  • Wendisch, M., and J.-L. Brenguier, 2013: Airborne Measurements for Environmental Research: Methods and Instruments. Wiley, 641 pp.

  • Werner, F., H. Siebert, P. Pilewskie, T. Schmeissner, R. A. Shaw, and M. Wendisch, 2013: New airborne retrieval approach for trade wind cumulus properties under overlying cirrus. J. Geophys. Res. Atmos., 118, 3634–3649, doi:10.1002/jgrd.50334.

    • Search Google Scholar
    • Export Citation
  • Werner, F., and Coauthors, 2014: Twomey effect observed from collocated microphysical and remote sensing measurements over shallow cumulus. J. Geophys. Res. Atmos., 119, 1534–1545, doi:10.1002/2013JD020131.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 296 120 3
PDF Downloads 296 124 2