• Berry, G. J., , and C. D. Thorncroft, 2005: Case study of an intense African easterly wave. Mon. Wea. Rev., 133, 752766, doi:10.1175/MWR2884.1.

    • Search Google Scholar
    • Export Citation
  • Berry, G. J., , and C. D. Thorncroft, 2012: African easterly wave dynamics in a mesoscale numerical model: The upscale role of convection. J. Atmos. Sci., 69, 12671283, doi:10.1175/JAS-D-11-099.1.

    • Search Google Scholar
    • Export Citation
  • Berry, G. J., , C. D. Thorncroft, , and T. Hewson, 2007: African easterly waves during 2004—Analysis using objective techniques. Mon. Wea. Rev., 135, 1251–1267, doi:10.1175/MWR3343.1.

    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., 1966: Critical layer instability in baroclinic flows. Quart. J. Roy. Meteor. Soc., 92, 325334, doi:10.1002/qj.49709239302.

    • Search Google Scholar
    • Export Citation
  • Briggs, R. J., 1964: Electron-Stream Interaction with Plasmas. The MIT Press, 187 pp.

  • Burpee, R. W., 1972: The origin and structure of easterly waves in the lower troposphere of North Africa. J. Atmos. Sci., 29, 7790, doi:10.1175/1520-0469(1972)029<0077:TOASOE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., 1969: Some remarks on African disturbances and their progress over the tropical Atlantic. Mon. Wea. Rev., 97, 716726, doi:10.1175/1520-0493(1969)097<0716:SROADA>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cornforth, R. J., , B. J. Hoskins, , and C. D. Thorncroft, 2009: The impact of moist processes on the African Easterly Jet–African Easterly Wave system. Quart. J. Roy. Meteor. Soc., 135, 894913, doi:10.1002/qj.414.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Diaz, M., , and A. Aiyyer, 2013a: The genesis of African easterly waves by upstream development. J. Atmos. Sci., 70, 34923512, doi:10.1175/JAS-D-12-0342.1.

    • Search Google Scholar
    • Export Citation
  • Diaz, M., , and A. Aiyyer, 2013b: Energy dispersion in African easterly waves. J. Atmos. Sci., 70, 130145, doi:10.1175/JAS-D-12-019.1.

  • Dickinson, M., , and J. Molinari, 2000: Climatology of sign reversals of the meridional potential vorticity gradient over Africa and Australia. Mon. Wea. Rev., 128, 38903900, doi:10.1175/1520-0493(2001)129<3890:COSROT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1A, 3352, doi:10.1111/j.2153-3490.1949.tb01265.x.

  • Farrell, B. F., 1982: Pulse asymptotics of the Charney baroclinic instability problem. J. Atmos. Sci., 39, 507517, doi:10.1175/1520-0469(1982)039<0507:PAOTCB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., 1983: Pulse asymptotics of three-dimensional baroclinic waves. J. Atmos. Sci., 40, 22022210, doi:10.1175/1520-0469(1983)040<2202:PAOTDB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grist, J. P., , S. E. Nicholson, , and A. I. Barcilon, 2002: Easterly waves over Africa. Part II: Observed and modeled contrasts between wet and dry years. Mon. Wea. Rev., 130, 212–225, doi:10.1175/1520-0493(2002)130<0212:EWOAPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hakim, G. J., 2003: Developing wave packets in the North Pacific storm track. Mon. Wea. Rev., 131, 2824–2837, doi:10.1175/1520-0493(2003)131<2824:DWPITN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hall, N. M. J., , G. N. Kiladis, , and C. D. Thorncroft, 2006: Three-dimensional structure and dynamics of African easterly waves. Part II: Dynamical modes. J. Atmos. Sci., 63, 22312245, doi:10.1175/JAS3742.1.

    • Search Google Scholar
    • Export Citation
  • Hill, C. M., , and Y.-L. Lin, 2003: Initiation of a mesoscale convective complex over the Ethiopian Highlands preceding the genesis of Hurricane Alberto (2000). Geophys. Res. Lett., 30, 1232, doi:10.1029/2002GL016655.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , M. E. McIntyre, , and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, doi:10.1002/qj.49711147002.

    • Search Google Scholar
    • Export Citation
  • Hsieh, J.-S., , and K. H. Cook, 2007: A study of the energetics of African easterly waves using a regional climate model. J. Atmos. Sci., 64, 421440, doi:10.1175/JAS3851.1.

    • Search Google Scholar
    • Export Citation
  • Hsieh, J.-S., , and K. H. Cook, 2008: On the instability of the African easterly jet and the generation of African waves: Reversals of the potential vorticity gradient. J. Atmos. Sci., 65, 21302151, doi:10.1175/2007JAS2552.1.

    • Search Google Scholar
    • Export Citation
  • Huerre, P., , and P. A. Monkewitz, 1990: Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech., 22, 473537, doi:10.1146/annurev.fl.22.010190.002353.

    • Search Google Scholar
    • Export Citation
  • Janiga, M. A., , and C. D. Thorncroft, 2013: Regional differences in the kinematic and thermodynamic structure of African easterly waves. Quart. J. Roy. Meteor. Soc., 139, 1598–1614, doi:10.1002/qj.2047.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., , C. D. Thorncroft, , and N. M. J. Hall, 2006: Three-dimensional structure and dynamics of African easterly waves. Part I: Observations. J. Atmos. Sci., 63, 22122230, doi:10.1175/JAS3741.1.

    • Search Google Scholar
    • Export Citation
  • Leroux, S., , and N. M. J. Hall, 2009: On the relationship between African easterly waves and the African easterly jet. J. Atmos. Sci., 66, 23032316, doi:10.1175/2009JAS2988.1.

    • Search Google Scholar
    • Export Citation
  • Leroux, S., , N. M. J. Hall, , and G. N. Kiladis, 2010: A climatological study of transient–mean-flow interactions over West Africa. Quart. J. Roy. Meteor. Soc., 136, 397410, doi:10.1002/qj.474.

    • Search Google Scholar
    • Export Citation
  • Leroux, S., , N. M. J. Hall, , and G. N. Kiladis, 2011: Intermittent African easterly wave activity in a dry atmospheric model: Influence of the extratropics. J. Climate, 24, 53785396, doi:10.1175/JCLI-D-11-00049.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., , K. E. Robertson, , and C. M. Hill, 2005: Origin and propagation of a disturbance associated with an African easterly wave as a precursor of Hurricane Alberto (2000). Mon. Wea. Rev., 133, 3276–3298, doi:10.1175/MWR3035.1.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., , B. Farrell, , and A. J. Rosenthal, 1983: Absolute barotropic instability and monsoon depressions. J. Atmos. Sci., 40, 11781184, doi:10.1175/1520-0469(1983)040<1178:ABIAMD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mass, C., 1979: A linear primitive equation model of African wave disturbances. J. Atmos. Sci., 36, 20752092, doi:10.1175/1520-0469(1979)036<2075:ALPEMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mekonnen, A., , C. D. Thorncroft, , and A. R. Aiyyer, 2006: Analysis of convection and its association with African easterly waves. J. Climate, 19, 54055421, doi:10.1175/JCLI3920.1.

    • Search Google Scholar
    • Export Citation
  • Merkine, L.-O., 1977: Convective and absolute instability of baroclinic eddies. Geophys. Astrophys. Fluid Dyn., 9, 129157, doi:10.1080/03091927708242322.

    • Search Google Scholar
    • Export Citation
  • Mozer, J. B., , and J. A. Zehnder, 1996: Lee vorticity production by large-scale tropical mountain ranges. Part II: A mechanism for the production of African waves. J. Atmos. Sci., 53, 539549, doi:10.1175/1520-0469(1996)053<0539:LVPBLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • O’Brien, J. J., 1970: A note on the vertical structure of the eddy exchange coefficient in the planetary boundary layer. J. Atmos. Sci., 27, 12131215, doi:10.1175/1520-0469(1970)027<1213:ANOTVS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., , and J. Katzfey, 1991: The life cycle of a cyclone wave in the Southern Hemisphere. Part I: Eddy energy budget. J. Atmos. Sci., 48, 19721998, doi:10.1175/1520-0469(1991)048<1972:TLCOAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., , and E. K. M. Chang, 1993: Ageostrophic geopotential fluxes in downstream and upstream development of baroclinic waves. J. Atmos. Sci., 50, 212225, doi:10.1175/1520-0469(1993)050<0212:AGFIDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1976: Finite-amplitude baroclinic disturbances in downstream varying currents. J. Phys. Oceanogr., 6, 335344, doi:10.1175/1520-0485(1976)006<0335:FABDID>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R., 1984: Local and global baroclinic instability of zonally varying flow. J. Atmos. Sci., 41, 21412162, doi:10.1175/1520-0469(1984)041<2141:LAGBIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R., , and K. Swanson, 1995: Baroclinic instability. Annu. Rev. Fluid Mech., 27, 419467, doi:10.1146/annurev.fl.27.010195.002223.

    • Search Google Scholar
    • Export Citation
  • Pytharoulis, I., , and C. Thorncroft, 1999: The low-level structure of African easterly waves in 1995. Mon. Wea. Rev., 127, 22662280, doi:10.1175/1520-0493(1999)127<2266:TLLSOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J., , D. C. Norquist, , and E. E. Recker, 1977: The structure and properties of African wave disturbances as observed during phase III of GATE. Mon. Wea. Rev.,105, 317–333, doi:10.1175/1520-0493(1977)105<0317:TSAPOA>2.0.CO;2.

  • Rennick, M. A., 1976: The generation of African waves. J. Atmos. Sci., 33, 19551969, doi:10.1175/1520-0469(1976)033<1955:TGOAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., 1980: The effect of nonlinearities on the evolution of barotropic easterly waves in a nonuniform environment. J. Atmos. Sci., 37, 26312643, doi:10.1175/1520-0469(1980)037<2631:TEONOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., 1977: A note on the instability of the African easterly jet. J. Atmos. Sci., 34, 16701674, doi:10.1175/1520-0469(1977)034<1670:ANOTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., , and B. J. Hoskins, 1979: The downstream and upstream development of unstable baroclinic waves. J. Atmos. Sci., 36, 12391254, doi:10.1175/1520-0469(1979)036<1239:TDAUDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Springer, 670 pp.

  • Swanson, K., , and R. T. Pierrehumbert, 1994: Nonlinear wave packet evolution on a baroclinically unstable jet. J. Atmos. Sci., 51, 384396, doi:10.1175/1520-0469(1994)051<0384:DCCISF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., 1995: An idealized study of African easterly waves. III: More realistic basic states. Quart. J. Roy. Meteor. Soc., 121, 15891614, doi:10.1002/qj.49712152706.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., , and B. J. Hoskins, 1994a: An idealized study of African easterly waves. I: A linear view. Quart. J. Roy. Meteor. Soc., 120, 953982, doi:10.1002/qj.49712051809.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., , and B. J. Hoskins, 1994b: An idealized study of African easterly waves. II: A nonlinear view. Quart. J. Roy. Meteor. Soc., 120, 9831015, doi:10.1002/qj.49712051810.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., , and M. Blackburn, 1999: Maintenance of the African easterly jet. Quart. J. Roy. Meteor. Soc., 125, 763786, doi:10.1002/qj.49712555502.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., , N. M. J. Hall, , and G. N. Kiladis, 2008: Three-dimensional structure and dynamics of African easterly waves. Part III: Genesis. J. Atmos. Sci., 65, 35963607, doi:10.1175/2008JAS2575.1.

    • Search Google Scholar
    • Export Citation
  • Tupaz, J. B., , R. T. Williams, , and C.-P. Chang, 1978: A numerical study of barotropic instability in a zonally varying easterly jet. J. Atmos. Sci., 35, 12651280, doi:10.1175/1520-0469(1978)035<1265:ANSOBI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 11 11 2
PDF Downloads 8 8 1

Absolute and Convective Instability of the African Easterly Jet

View More View Less
  • 1 North Carolina State University, Raleigh, North Carolina
© Get Permissions
Restricted access

Abstract

The stability of the African easterly jet (AEJ) is examined using idealized numerical simulations. It is found that a zonally homogeneous representation of the AEJ can support absolute instability in the form of African easterly waves (AEWs). This finding is verified through a local energy budget, which demonstrates the presence of both upstream and downstream energy fluxes. These energy fluxes allow unstable wave packets to spread upstream and downstream relative to their initial point of excitation. This finding is further verified by showing that the ground-relative group velocity of these wave packets has both eastward and westward components. In contrast with normal-mode instability theory, which emphasizes wave growth through energy extraction from the basic state, the life cycle of the simulated AEWs is strongly governed by energy fluxes. Convergent fluxes at the beginning of the AEW storm track generate new AEWs, whereas divergent fluxes at the end of the storm track lead to their decay. It is argued that, even with small normal-mode growth rates and a short region of instability, the presence of absolute instability allows AEWs to develop through the mixed baroclinic–barotropic instability mechanism, because upstream energy fluxes allow energy extracted through baroclinic and barotropic conversion to be recycled between successive AEWs.

Corresponding author address: Michael Diaz, Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, 2800 Faucette Drive, Raleigh, NC 27695. E-mail: mldiaz@ncsu.edu

Abstract

The stability of the African easterly jet (AEJ) is examined using idealized numerical simulations. It is found that a zonally homogeneous representation of the AEJ can support absolute instability in the form of African easterly waves (AEWs). This finding is verified through a local energy budget, which demonstrates the presence of both upstream and downstream energy fluxes. These energy fluxes allow unstable wave packets to spread upstream and downstream relative to their initial point of excitation. This finding is further verified by showing that the ground-relative group velocity of these wave packets has both eastward and westward components. In contrast with normal-mode instability theory, which emphasizes wave growth through energy extraction from the basic state, the life cycle of the simulated AEWs is strongly governed by energy fluxes. Convergent fluxes at the beginning of the AEW storm track generate new AEWs, whereas divergent fluxes at the end of the storm track lead to their decay. It is argued that, even with small normal-mode growth rates and a short region of instability, the presence of absolute instability allows AEWs to develop through the mixed baroclinic–barotropic instability mechanism, because upstream energy fluxes allow energy extracted through baroclinic and barotropic conversion to be recycled between successive AEWs.

Corresponding author address: Michael Diaz, Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, 2800 Faucette Drive, Raleigh, NC 27695. E-mail: mldiaz@ncsu.edu
Save