• Ackerman, A. S., , O. B. Toon, , D. E. Stevens, , A. J. Heymsfield, , V. Ramanathan, , and E. J. Welton, 2000: Reduction of tropical cloudiness by soot. Science, 288, 10421047, doi:10.1126/science.288.5468.1042.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., , J. R. Holton, , and D. R. Durran, 1995: The gravity wave response above deep convection in a squall line simulation. J. Atmos. Sci., 52, 22122226, doi:10.1175/1520-0469(1995)052<2212:TGWRAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Biggerstaff, M. I., , and R. A. Houze Jr., 1991: Kinematic and precipitation structure of the 10–11 June 1985 squall line. Mon. Wea. Rev., 119, 30343065, doi:10.1175/1520-0493(1991)119<3034:KAPSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Biggerstaff, M. I., , and R. A. Houze Jr., 1993: Kinematics and microphysics of the transition zone of the 10–11 June 1985 squall line. J. Atmos. Sci., 50, 30913110, doi:10.1175/1520-0469(1993)050<3091:KAMOTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , and P. K. Smolarkiewicz, 1989: Gravity waves, compensating subsidence and detrainment around cumulus clouds. J. Atmos. Sci., 46, 740759. doi:10.1175/1520-0469(1989)046<0740:GWCSAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davies, L., and Coauthors, 2013: A single-column model ensemble approach applied to the TWP-ICE experiment. J. Geophys. Res. Atmos., 118, 65446563, doi:10.1002/jgrd.50450.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A., , and J. Wu, 2010: The role of entrainment in the diurnal cycle of continental convection. J. Climate, 23, 27222738, doi:10.1175/2009JCLI3340.1.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1997: The role of gravity waves in the quasi-biennial oscillation. J. Geophys. Res., 102, 26 05326 076, doi:10.1029/96JD02999.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Fridlind, A. M., , A. S. Ackerman, , J. C. Petch, , P. R. Field, , A. Hill, , G. McFarquhar, , S. Xie, , and M. Zhang, 2010: ARM/GCSS/SPARC TWP-ICE CRM intercomparison study. NASA Tech. Rep. NASA/TM–2010–215 858, 26 pp.

  • Fridlind, A. M., and Coauthors, 2012: A comparison of TWP-ICE observational data with cloud-resolving model results. J. Geophys. Res., 117, D05204, doi:10.1029/2011JD016595.

    • Search Google Scholar
    • Export Citation
  • Grim, J. A., , G. M. McFarquhar, , R. M. Rauber, , A. M. Smith, , and B. F. Jewett, 2009: Microphysical and thermodynamic structure and evolution of the trailing stratiform regions of mesoscale convective systems during BAMEX. Part II: Column model simulations. Mon. Wea. Rev., 137, 11861205, doi:10.1175/2008MWR2505.1.

    • Search Google Scholar
    • Export Citation
  • Houghton, H. G., 1968: On precipitation mechanisms and their artificial modification. J. Appl. Meteor., 7, 851859, doi:10.1175/1520-0450(1968)007<0851:OPMATA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1989: Observed structure of mesoscale convective systems and implications for large-scale heating. Quart. J. Roy. Meteor. Soc., 115, 425461, doi:10.1002/qj.49711548702.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1997: Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc., 78, 21792196, doi:10.1175/1520-0477(1997)078<2179:SPIROC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, doi:10.1029/2004RG000150.

  • Khain, A. P., , V. Phillips, , N. Benmoshe, , and A. Pokrovsky, 2012: The role of small soluble aerosols in the microphysics of deep maritime clouds. J. Atmos. Sci., 69, 27872807, doi:10.1175/2011JAS3649.1.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., , and D. A. Randall, 2003: Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60, 607625, doi:10.1175/1520-0469(2003)060<0607:CRMOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., , M. J. Reeder, , and T. L. Clark, 2001: Numerical modeling of gravity wave generation by deep tropical convection. J. Atmos. Sci., 58, 12491274, doi:10.1175/1520-0469(2001)058<1249:NMOGWG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lang, S., , W.-K. Tao, , J. Simpson, , and B. Ferrier, 2003: Modeling of convective – stratiform precipitation processes: Sensitivity to partitioning methods. J. Appl. Meteor., 42, 505527, doi:10.1175/1520-0450(2003)042<0505:MOCSPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., , R. Deal, , and M. S. Kulie, 1998: Mechanisms of cell regeneration, development, and propagation within a two-dimensional multicell storm. J. Atmos. Sci., 55, 18671886, doi:10.1175/1520-0469(1998)055<1867:MOCRDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 1993: Gregarious tropical convection. J. Atmos. Sci., 50, 20262037. doi:10.1175/1520-0469(1993)050<2026:GTC>2.0.CO;2.

  • Mapes, B. E., , and R. A. Houze, Jr., 1993: An integrated view of the 1987 Australian monsoon and its mesoscale convective systems. II: Vertical structure. Quart. J. Roy. Meteor. Soc., 119, 733754, doi:10.1002/qj.49711951207.

    • Search Google Scholar
    • Export Citation
  • May, P. T., , J. H. Mather, , G. Vaughan, , K. N. Bower, , C. Jakob, , G. M. McFarquhar, , and G. G. Mace, 2008: The Tropical Warm Pool International Cloud Experiment. Bull. Amer. Meteor. Soc., 89, 629645, doi:10.1175/BAMS-89-5-629.

    • Search Google Scholar
    • Export Citation
  • McFarlane, S. A., , K. F. Evans, , and A. S. Ackerman, 2002: A Bayesian algorithm for the retrieval of liquid water cloud properties from microwave radiometer and millimeter radar data. J. Geophys. Res.,107, doi:10.1029/2001JD001011.

  • Morrison, H., , G. Thompson, , and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one-and two-moment schemes. Mon. Wea. Rev., 137, 9911007, doi:10.1175/2008MWR2556.1.

    • Search Google Scholar
    • Export Citation
  • Mrowiec, A. A., , C. Rio, , A. M. Fridlind, , A. S. Ackerman, , A. D. Del Genio, , O. Pauluis, , A. Varble, , and J. Fan, 2012: Analysis of cloud-resolving simulations of a tropical mesoscale convective system observed during TWP-ICE: Vertical fluxes and draft properties in convective and stratiform regions. J. Geophys. Res., 117, D19201, doi:10.1029/2012JD017759.

    • Search Google Scholar
    • Export Citation
  • Ogura, Y., , and N. A. Phillips, 1962: Scale analysis of deep and shallow convection in the atmosphere. J. Atmos. Sci., 19, 173179, doi:10.1175/1520-0469(1962)019<0173:SAODAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pauluis, O. M., , and A. A. Mrowiec, 2013: Isentropic analysis of convective motions. J. Atmos. Sci., 70, 36733688, doi:10.1175/JAS-D-12-0205.1.

    • Search Google Scholar
    • Export Citation
  • Pauluis, O. M., , A. Czaja, , and R. Korty, 2008: The global atmospheric circulation on moist isentropes. Science, 321, 10751078, doi:10.1126/science.1159649.

    • Search Google Scholar
    • Export Citation
  • Pauluis, O. M., , A. Czaja, , and R. Korty, 2010: The global atmospheric circulation in moist isentropic coordinates. J. Climate, 23, 30773093, doi:10.1175/2009JCLI2789.1.

    • Search Google Scholar
    • Export Citation
  • Pauluis, O. M., , T. Shaw, , and F. Laliberté, 2011: A statistical generalization of the transformed Eulerian-mean circulation for an arbitrary vertical coordinate system. J. Atmos. Sci., 68, 17661783, doi:10.1175/2011JAS3711.1.

    • Search Google Scholar
    • Export Citation
  • Petch, J., , A. Hill, , L. Davies, , A. Fridlind, , C. Jakob, , Y. Lin, , S. Xie, , and P. Zhu, 2014: Evaluation of intercomparisons of four different types of model simulating TWP-ICE. Quart. J. Roy. Meteor. Soc., 140, 826837, doi:10.1002/qj.2192.

    • Search Google Scholar
    • Export Citation
  • Piani, C., , D. Durran, , M. Alexander, , and J. Holton, 2000: A numerical study of three-dimensional gravity waves triggered by deep tropical convection and their role in the dynamics of the QBO. J. Atmos. Sci., 57, 36893702, doi:10.1175/1520-0469(2000)057<3689:ANSOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., , and H. Jiang, 1990: A theory for long-lived mesoscale convective systems. J. Atmos. Sci., 47, 30673077, doi:10.1175/1520-0469(1990)047<3067:ATFLLM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rossby, C.-G., 1937: Isentropic analysis. Bull. Amer. Meteor. Soc., 18, 201209.

  • Shaw, S. N., 1930: The Physical Processes of Weather. Vol. 3, Manual of Meteorology, Cambridge University Press, 474 pp.

  • Steiner, M., , R. A. Houze Jr., , and S. E. Yuter, 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34, 19782007, doi:10.1175/1520-0450(1995)034<1978:CCOTDS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stevens, D. E., , and S. Bretherton, 1996: A forward-in-time advection scheme and adaptive multilevel flow solver for nearly incompressible atmospheric flow. J. Comput. Phys., 129, 284295, doi:10.1006/jcph.1996.0250.

    • Search Google Scholar
    • Export Citation
  • Stevens, D. E., , A. S. Ackerman, , and C. S. Bretherton, 2002: Effects of domain size and numerical resolution on the simulation of shallow cumulus convection. J. Atmos. Sci., 59, 32853301, doi:10.1175/1520-0469(2002)059<3285:EODSAN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Toon, O. B., , C. P. McKay, , T. P. Ackerman, , and K. Santhanam, 1989: Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres. J. Geophys. Res., 94, 16 28716 301, doi:10.1029/JD094iD13p16287.

    • Search Google Scholar
    • Export Citation
  • Townsend, R. D., , and D. R. Johnson, 1985: A diagnostic study of the isentropic zonally averaged mass circulation during the First GARP Global Experiment. J. Atmos. Sci., 42, 15651579, doi:10.1175/1520-0469(1985)042<1565:ADSOTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Varble, A., and Coauthors, 2011: Evaluation of cloud-resolving model intercomparison simulations using TWP-ICE observations: Precipitation and cloud structure. J. Geophys. Res., 116, D12206, doi:10.1029/2010JD015180.

    • Search Google Scholar
    • Export Citation
  • Varble, A., and Coauthors, 2014a: Evaluation of cloud-resolving and limited area model intercomparison simulations using TWP-ICE observations: 1. Deep convective updraft properties. J. Geophys. Res. Atmos., 119, 13 89113 918, doi:10.1002/2013JD021371.

    • Search Google Scholar
    • Export Citation
  • Varble, A., and Coauthors, 2014b: Evaluation of cloud-resolving and limited area model intercomparison simulations using TWP-ICE observations: 2. Precipitation microphysics. J. Geophys. Res. Atmos., 119, 13 91913 945, doi:10.1002/2013JD021372.

    • Search Google Scholar
    • Export Citation
  • Xie, S., , T. Hume, , C. Jakob, , S. A. Klein, , R. B. McCoy, , and M. Zhang, 2010: Observed large-scale structures and diabatic heating and drying profiles during TWP-ICE. J. Climate, 23, 5779, doi:10.1175/2009JCLI3071.1.

    • Search Google Scholar
    • Export Citation
  • Xu, K.-M., , and K. A. Emanuel, 1989: Is the tropical atmosphere conditionally unstable? Mon. Wea. Rev., 117, 14711479, doi:10.1175/1520-0493(1989)117<1471:ITTACU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, M. H., , and J. L. Lin, 1997: Constrained variational analysis of sounding data based on column-integrated budgets of mass, heat, moisture, and momentum: Approach and application to ARM measurements. J. Atmos. Sci., 54, 15031524, doi:10.1175/1520-0469(1997)054<1503:CVAOSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhu, P., and Coauthors, 2012: A limited area model (LAM) intercomparison study of a TWP-ICE active monsoon mesoscale convective event. J. Geophys. Res.,117, D11208, doi:10.1029/2011JD016447.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 7 7 2
PDF Downloads 5 5 2

Properties of a Mesoscale Convective System in the Context of an Isentropic Analysis

View More View Less
  • 1 Columbia University, and NASA Goddard Institute for Space Studies, New York, New York
  • 2 Courant Institute of Mathematical Sciences, New York University, New York, New York
  • 3 NASA Goddard Institute for Space Studies, New York, New York
© Get Permissions
Restricted access

Abstract

Application of an isentropic analysis of convective motions to a simulated mesoscale convective system is presented. The approach discriminates the vertical mass transport in terms of equivalent potential temperature. The scheme separates rising air at high entropy from subsiding air at low entropy. This also filters out oscillatory motions associated with gravity waves and isolates the overturning motions associated with convection and mesoscale circulation. The mesoscale convective system is additionally partitioned into stratiform and convective regions based on the radar reflectivity field. For each of the subregions, the mass transport derived in terms of height and an isentropic invariant of the flow is analyzed. The difference between the Eulerian mass flux and the isentropic counterpart is a significant and symmetric contribution of the buoyant oscillations to the upward and downward mass fluxes. Filtering out these oscillations results in substantial reduction of the diagnosed downward-to-upward convective mass flux ratio. The analysis is also applied to graupel and snow mixing ratios and number concentrations, illustrating the relationship of the particle formation process to the updrafts.

Corresponding author address: Agnieszka Mrowiec, Columbia University, 2880 Broadway, New York, NY 10025. E-mail: agni.mrowiec@gmail.com

Abstract

Application of an isentropic analysis of convective motions to a simulated mesoscale convective system is presented. The approach discriminates the vertical mass transport in terms of equivalent potential temperature. The scheme separates rising air at high entropy from subsiding air at low entropy. This also filters out oscillatory motions associated with gravity waves and isolates the overturning motions associated with convection and mesoscale circulation. The mesoscale convective system is additionally partitioned into stratiform and convective regions based on the radar reflectivity field. For each of the subregions, the mass transport derived in terms of height and an isentropic invariant of the flow is analyzed. The difference between the Eulerian mass flux and the isentropic counterpart is a significant and symmetric contribution of the buoyant oscillations to the upward and downward mass fluxes. Filtering out these oscillations results in substantial reduction of the diagnosed downward-to-upward convective mass flux ratio. The analysis is also applied to graupel and snow mixing ratios and number concentrations, illustrating the relationship of the particle formation process to the updrafts.

Corresponding author address: Agnieszka Mrowiec, Columbia University, 2880 Broadway, New York, NY 10025. E-mail: agni.mrowiec@gmail.com
Save