• Branstator, G., 2014: Long-lived response of the midlatitude circulation and storm tracks to pulses of tropical heating. J. Climate,27, 8809–8826, doi:10.1175/JCLI-D-14-00312.1.

  • Chan, S., , and S. Nigam, 2009: Residual diagnosis of diabatic heating from ERA-40 and NCEP reanalyses: Intercomparisons with TRMM. J. Climate, 22, 414428, doi:10.1175/2008JCLI2417.1.

    • Search Google Scholar
    • Export Citation
  • DeWeaver, E., , and S. Nigam, 2002: Linearity in ENSO’s atmospheric response. J. Climate, 15, 24462461, doi:10.1175/1520-0442(2002)015<2446:LIESAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ferranti, L., , T. Palmer, , F. Molteni, , and E. Klinker, 1990: Tropical-extratropical interaction associated with the 30–60 day oscillation, and its impact on medium and extended range prediction. J. Atmos. Sci., 47, 21772199, doi:10.1175/1520-0469(1990)047<2177:TEIAWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, doi:10.1175/2011JCLI4083.1.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , S. W. Lyons, , and S. Nigam, 1989: Transients and the extratropical response to El Niño. J. Atmos. Sci., 46, 163174, doi:10.1175/1520-0469(1989)046<0163:TATERT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., , A. Kumar, , and M. Zhong, 1997: El Niño, La Niña, and the nonlinearity of their teleconnections. J. Climate, 10, 17691796, doi:10.1175/1520-0442(1997)010<1769:ENOLNA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Horel, J. R., , and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813829, doi:10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B., , and D. Karoly, 1981: The steady linear response of a spherical atmospheric thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, doi:10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., , J. J. Hack, , D. Shea, , J. M. Caron, , and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model. J. Climate, 21, 51455153, doi:10.1175/2008JCLI2292.1.

    • Search Google Scholar
    • Export Citation
  • Jang, Y., , and D. M. Straus, 2012: The Indian Monsoon circulation response to El Niño diabatic heating. J. Climate, 25, 74877508, doi:10.1175/JCLI-D-11-00637.1.

    • Search Google Scholar
    • Export Citation
  • Jang, Y., , and D. M. Straus, 2013: Tropical stationary wave response to ENSO: Diabatic heating influence on the Indian summer monsoon. J. Atmos. Sci., 70, 193202, doi:10.1175/JAS-D-12-036.1.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., , and B. J. Hoskins, 1995: The direct response to tropical heating in a baroclinic atmosphere. J. Atmos. Sci., 52, 307319, doi:10.1175/1520-0469(1995)052<0307:TDRTTH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kao, H.-Y., , and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632, doi:10.1175/2008JCLI2309.1.

    • Search Google Scholar
    • Export Citation
  • Kug, J. S., , F. F. Jin, , and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 14991515, doi:10.1175/2008JCLI2624.1.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. Mon. Wea. Rev., 28, 702708, doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1994: Observations of the 40–50 day tropical oscillation: A review. Mon. Wea. Rev., 122, 814837, doi:10.1175/1520-0493(1994)122<0814:OOTDTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., , and G. N. Kiladis, 1999a: Interactions between ENSO, transient circulation, and tropical convection over the Pacific. J. Climate, 12, 30623086, doi:10.1175/1520-0442(1999)012<3062:IBETCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., , and G. N. Kiladis, 1999b: The tropical-extratropical interaction between high-frequency transients and the Madden–Julian oscillation. Mon. Wea. Rev., 127, 661677, doi:10.1175/1520-0493(1999)127<0661:TTEIBH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 1985: On the three-dimensional propagation of stationary waves. J. Atmos. Sci., 42, 217229, doi:10.1175/1520-0469(1985)042<0217:OTTDPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., , and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251, doi:10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Straus, D. M., 1983: On the role of the seasonal cycle. Mon. Wea. Rev., 40, 303313.

  • Subramanian, A. C., , M. Jochum, , A. J. Miller, , R. Murtugudde, , R. B. Neale, , and D. E. Waliser, 2011: The Madden–Julian oscillation in CCSM4. J. Climate, 24, 62616282, doi:10.1175/JCLI-D-11-00031.1.

    • Search Google Scholar
    • Export Citation
  • Uppala, S., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 19 19 8
PDF Downloads 11 11 3

Transient Tropical Diabatic Heating and the Seasonal-Mean Response to ENSO

View More View Less
  • 1 APEC Climate Center, Busan, South Korea
  • 2 George Mason University, Fairfax, Virginia
© Get Permissions
Restricted access

Abstract

Boreal winter simulations of the Community Atmospheric Model, version 4.0, were carried out using observed sea surface temperature (SST) fields from the three El Niño events of 1982/83, 1991/92, and 1997/98 [control (CTL) runs] and from observed climatology (CLIM run). In each case, 50 ensemble members were run (1 November–31 March). The diabatic heating Q at every grid point, level, and day of the CTL runs in the Indo-Pacific region was stored and used in four additional suites of experiments, each of which parallels the appropriate CTL suite. In each suite, Q generated by the model is replaced by a specified subset of Q at every time step, grid point, and level spanning the Indo-Pacific. The Q subsets consist of the seasonal ensemble-CTL-mean Q for each ensemble member (suite FIX), the seasonal-mean Q from the appropriate ensemble member of the CTL (suite EFIX), the seasonal mean plus low-frequency component of Q (suite ESUBFIX), and the daily means of Q (suite DAYFIX).

The midlatitude ENSO anomalies of the seasonal-mean upper-level height field and time-filtered meridional wind variance are enhanced in the FIX, EFIX, and ESUBFIX suites, with little change in patterns, compared to CTL anomalies. The enhancements have a smaller magnitude in ESUBFIX and especially in DAYFIX; qualitative differences are seen in DAYFIX. These differences are due to (i) the required setup time for midlatitude response, (ii) the altered relationship between vertical structure and vertically integrated heating, and (iii) the lack of midlatitude interactive influence on tropical heating in the experiments.

Corresponding author address: Erik Swenson, George Mason University, MSN 6C5, 440 University Drive, Fairfax, VA 22030. E-mail: eswenso1@gmu.edu

Abstract

Boreal winter simulations of the Community Atmospheric Model, version 4.0, were carried out using observed sea surface temperature (SST) fields from the three El Niño events of 1982/83, 1991/92, and 1997/98 [control (CTL) runs] and from observed climatology (CLIM run). In each case, 50 ensemble members were run (1 November–31 March). The diabatic heating Q at every grid point, level, and day of the CTL runs in the Indo-Pacific region was stored and used in four additional suites of experiments, each of which parallels the appropriate CTL suite. In each suite, Q generated by the model is replaced by a specified subset of Q at every time step, grid point, and level spanning the Indo-Pacific. The Q subsets consist of the seasonal ensemble-CTL-mean Q for each ensemble member (suite FIX), the seasonal-mean Q from the appropriate ensemble member of the CTL (suite EFIX), the seasonal mean plus low-frequency component of Q (suite ESUBFIX), and the daily means of Q (suite DAYFIX).

The midlatitude ENSO anomalies of the seasonal-mean upper-level height field and time-filtered meridional wind variance are enhanced in the FIX, EFIX, and ESUBFIX suites, with little change in patterns, compared to CTL anomalies. The enhancements have a smaller magnitude in ESUBFIX and especially in DAYFIX; qualitative differences are seen in DAYFIX. These differences are due to (i) the required setup time for midlatitude response, (ii) the altered relationship between vertical structure and vertically integrated heating, and (iii) the lack of midlatitude interactive influence on tropical heating in the experiments.

Corresponding author address: Erik Swenson, George Mason University, MSN 6C5, 440 University Drive, Fairfax, VA 22030. E-mail: eswenso1@gmu.edu
Save