• Arakawa, A., , and V. R. Lamb, 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. General Circulation Models of the Atmosphere, Methods in Computational Physics: Advances in Research and Applications, Vol. 17, J. Chang, Ed., Academic Press, 173265.

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., 1997: The effect of relative flow on the asymmetric structure in the interior of hurricanes. J. Atmos. Sci., 54, 703724, doi:10.1175/1520-0469(1997)054<0703:TEORFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., 1993: Synoptic-Dynamic Meteorology in Midlatitudes. Vol. 1, Principles of Kinematics and Dynamics, Oxford University Press, 431 pp.

  • Braun, S. A., 2002: A cloud-resolving simulation of Hurricane Bob (1991): Storm structure and eyewall buoyancy. Mon. Wea. Rev., 130, 15731592, doi:10.1175/1520-0493(2002)130<1573:ACRSOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., , and L. Wu, 2007: A numerical study of Hurricane Erin (2001). Part II: Shear and the organization of eyewall vertical motion. Mon. Wea. Rev., 135, 11791194, doi:10.1175/MWR3336.1.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., , and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, doi:10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., , and R. Rotunno, 2009: The influence of near-surface, high-entropy air in hurricane eyes on maximum hurricane intensity. J. Atmos. Sci., 66, 148158, doi:10.1175/2008JAS2707.1.

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., , and J. Molinari, 2003: The relationship between storm motion, vertical wind shear, and convective asymmetries in tropical cyclones. J. Atmos. Sci., 60, 366376, doi:10.1175/1520-0469(2003)060<0366:TRBSMV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cram, T. A., , J. Persing, , M. T. Montgomery, , and S. A. Braun, 2007: A Lagrangian trajectory view on transport and mixing processes between the eye, eyewall, and environment using a high-resolution simulation of Hurricane Bonnie (1998). J. Atmos. Sci., 64, 18351856, doi:10.1175/JAS3921.1.

    • Search Google Scholar
    • Export Citation
  • Ford, R., 1994: The instability of an axisymmetric vortex with monotonic potential vorticity in rotating shallow water. J. Fluid Mech., 280, 303334, doi:10.1017/S0022112094002946.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., , and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 22492269, doi:10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Haller, G., , and G. Yuan, 2000: Lagrangian coherent structures and mixing in two-dimensional turbulence. Physica D, 147, 352370, doi:10.1016/S0167-2789(00)00142-1.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., , W. H. Schubert, , R. K. Taft, , H. Wang, , and J. P. Kossin, 2009: Life cycles of hurricane-like vorticity rings. J. Atmos. Sci., 66, 705722, doi:10.1175/2008JAS2820.1.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., , W. H. Schubert, , S. R. Fulton, , and B. D. McNoldy, 2010: Spontaneous-adjustment emission of inertia–gravity waves by unsteady vortical motion in the hurricane core. Quart. J. Roy. Meteor. Soc., 136, 537548, doi:10.1002/qj.547.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., , B. D. McNoldy, , and W. H. Schubert, 2012: Observed inner-core structural variability in Hurricane Dolly (2008). Mon. Wea. Rev., 140, 40664077, doi:10.1175/MWR-D-12-00018.1.

    • Search Google Scholar
    • Export Citation
  • Hodyss, D., , and D. Nolan, 2008: The Rossby-inertia-buoyancy instability in baroclinic vortices. Phys. Fluids, 20, 096602, doi:10.1063/1.2980354.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 2004: An Introduction to Dynamic Meterology. Academic Press, 535 pp.

  • Hoskins, B. J., , M. E. McIntyre, , and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, doi:10.1002/qj.49711147002.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 1995: The evolution of vortices in vertical shear. I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121, 821851, doi:10.1002/qj.49712152406.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 2000: The evolution of vortices in vertical shear. III: Baroclinic vortices. Quart. J. Roy. Meteor. Soc., 126, 31613185, doi:10.1002/qj.49712657009.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 2004: On the ability of dry tropical-cyclone-like vortices to withstand vertical shear. J. Atmos. Sci., 61, 114119, doi:10.1175/1520-0469(2004)061<0114:OTAODT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., , and M. D. Eastin, 2001: Two distinct regimes in the kinematic and thermodynamic structure of the hurricane eye and eyewall. J. Atmos. Sci., 58, 10791090, doi:10.1175/1520-0469(2001)058<1079:TDRITK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., , and W. H. Schubert, 2001: Mesovortices, polygonal flow patterns, and rapid pressure falls in hurricane-like vortices. J. Atmos. Sci., 58, 21962209, doi:10.1175/1520-0469(2001)058<2196:MPFPAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., , S. Pattnaik, , L. Stefanova, , T. S. V. Vijaya Kumar, , B. P. Mackey, , A. J. O’Shay, , and R. J. Pasch, 2005: The hurricane intensity issue. Mon. Wea. Rev., 133, 18861912, doi:10.1175/MWR2954.1.

    • Search Google Scholar
    • Export Citation
  • Kwon, Y. C., , and W. M. Frank, 2005: Dynamic instabilities of simulated hurricane-like vortices and their impacts on the core structure of hurricanes. Part I: Dry experiments. J. Atmos. Sci., 62, 39553973, doi:10.1175/JAS3575.1.

    • Search Google Scholar
    • Export Citation
  • Kwon, Y. C., , and W. M. Frank, 2008: Dynamic instabilities of simulated hurricane-like vortices and their impacts on the core structure of hurricanes. Part II: Moist experiments. J. Atmos. Sci., 65, 106122, doi:10.1175/2007JAS2132.1.

    • Search Google Scholar
    • Export Citation
  • Mallen, K. J., , M. T. Montgomery, , and B. Wang, 2005: Reexamining the near-core radial structure of the tropical cyclone primary circulation: Implications for vortex resiliency. J. Atmos. Sci., 62, 408425, doi:10.1175/JAS-3377.1.

    • Search Google Scholar
    • Export Citation
  • Menelaou, K., , and M. K. Yau, 2014: On the role of asymmetric convective bursts to the problem of hurricane intensification: Radiation of vortex Rossby waves and wave–mean flow interactions. J. Atmos. Sci., 71, 20572077, doi:10.1175/JAS-D-13-0343.1.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., , and D. Vollaro, 2010: Distribution of helicity, CAPE, and shear in tropical cyclones. J. Atmos. Sci., 67, 274284, doi:10.1175/2009JAS3090.1.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., , and R. K. Kallenbach, 1997: A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435465, doi:10.1002/qj.49712353810.

    • Search Google Scholar
    • Export Citation
  • Moon, Y., , and D. S. Nolan, 2010: Do gravity waves transport angular momentum away from tropical cyclones? J. Atmos. Sci., 67, 117135, doi:10.1175/2009JAS3088.1.

    • Search Google Scholar
    • Export Citation
  • Nguyen, C. M., , M. J. Reeder, , N. E. Davidson, , R. K. Smith, , and M. T. Montgomery, 2011: Inner-core vacillation cycles during the intensification of Hurricane Katrina. Quart. J. Roy. Meteor. Soc., 137, 829844, doi:10.1002/qj.823.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., , and L. D. Grasso, 2003: Nonhydrostatic, three-dimensional perturbations to balanced, hurricane-like vortices. Part II: Symmetric response and nonlinear simulations. J. Atmos. Sci., 60, 27172745, doi:10.1175/1520-0469(2003)060<2717:NTPTBH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., , Y. Moon, , and D. P. Stern, 2007: Tropical cyclone intensification from asymmetric convection: Energetics and efficiency. J. Atmos. Sci., 64, 33773405, doi:10.1175/JAS3988.1.

    • Search Google Scholar
    • Export Citation
  • Persing, J., , M. T. Montgomery, , J. C. McWilliams, , and R. K. Smith, 2013: Asymmetric and axisymmetric dynamics of tropical cyclones. Atmos. Chem. Phys., 13, 12 29912 341, doi:10.5194/acp-13-12299-2013.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., , M. T. Montgomery, , and L. D. Grasso, 2004: A new look at the problem of tropical cyclones in vertical shear flow: Vortex resiliency. J. Atmos. Sci., 61, 322, doi:10.1175/1520-0469(2004)061<0003:ANLATP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., , M. D. Eastin, , and J. F. Gamache, 2009: Rapidly intensifying Hurricane Guillermo (1997). Part I: Low-wavenumber structure and evolution. Mon. Wea. Rev., 137, 603631, doi:10.1175/2008MWR2487.1.

    • Search Google Scholar
    • Export Citation
  • Riemer, M., , M. T. Montgomery, , and M. E. Nicholls, 2010: A new paradigm for intensity modification of tropical cyclones: Thermodynamic impact of vertical wind shear on the inflow layer. Atmos. Chem. Phys., 10, 31633188, doi:10.5194/acp-10-3163-2010.

    • Search Google Scholar
    • Export Citation
  • Rogers, R., , P. Reasor, , and S. Lorsolo, 2013: Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones. Mon. Wea. Rev., 141, 29702991, doi:10.1175/MWR-D-12-00357.1.

    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., , J. P. Kossin, , W. H. Schubert, , and P. J. Mulero, 2009: Internal control of hurricane intensity variability: The dual nature of potential vorticity mixing. J. Atmos. Sci., 66, 133147, doi:10.1175/2008JAS2717.1.

    • Search Google Scholar
    • Export Citation
  • Ryglicki, D. R., , and R. E. Hart, 2015: An investigation of center-finding techniques for tropical cyclones in mesoscale models. J. Appl. Meteor. Climatol., doi:10.1175/JAMC-D-14-0106.1, in press.

  • Schecter, D. A., 2008: The spontaneous imbalance of an atmospheric vortex at high rossby number. J. Atmos. Sci., 65, 24982521, doi:10.1175/2007JAS2490.1.

    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., , and M. T. Montgomery, 2006: Conditions that inhibit the spontaneous radiation of spiral inertia–gravity waves from an intense mesoscale cyclone. J. Atmos. Sci., 63, 435456, doi:10.1175/JAS3641.1.

    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., , and M. T. Montgomery, 2007: Waves in a cloudy vortex. J. Atmos. Sci., 64, 314337, doi:10.1175/JAS3849.1.

  • Schecter, D. A., , M. T. Montgomery, , and P. D. Reasor, 2002: A theory for the vertical alignment of a quasigeostrophic vortex. J. Atmos. Sci., 59, 150168, doi:10.1175/1520-0469(2002)059<0150:ATFTVA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., , M. T. Montgomery, , R. K. Taft, , T. A. Guinn, , S. R. Fulton, , J. P. Kossin, , and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56, 11971223, doi:10.1175/1520-0469(1999)056<1197:PEAECA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sitkowski, M., , and G. M. Barnes, 2009: Low-level thermodynamic, kinematic, and reflectivity fields of Hurricane Guillermo (1997) during rapid intensification. Mon. Wea. Rev., 137, 645663, doi:10.1175/2008MWR2531.1.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., , W. Ulrich, , and G. Sneddon, 2000: The dynamics of hurricane-like vortices in vertical-shear flows. Quart. J. Roy. Meteor. Soc., 126, 26532670, doi:10.1002/qj.49712656903.

    • Search Google Scholar
    • Export Citation
  • Tang, B., , and K. Emanuel, 2010: Midlevel ventilation’s constraint on tropical cyclone intensity. J. Atmos. Sci., 67, 18171830, doi:10.1175/2010JAS3318.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2002: Vortex Rossby waves in a numerically simulated tropical cyclone. Part I: Overall structure, potential vorticity, and kinetic energy budgets. J. Atmos. Sci., 59, 12131238, doi:10.1175/1520-0469(2002)059<1213:VRWIAN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, L., , and S. A. Braun, 2004: Effects of environmentally induced asymmetries on hurricane intensity: A numerical study. J. Atmos. Sci., 61, 30653081, doi:10.1175/JAS-3343.1.

    • Search Google Scholar
    • Export Citation
  • Yang, B., , Y. Wang, , and B. Wang, 2007: The effect of internally generated inner-core asymmetries on tropical cyclone potential intensity. J. Atmos. Sci., 64, 11651188, doi:10.1175/JAS3971.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 26 26 11
PDF Downloads 17 17 3

An Analysis of a Barotropically Unstable, High–Rossby Number Vortex in Shear

View More View Less
  • 1 Fleet Numerical Meteorology and Oceanography Center, Monterey, California
© Get Permissions
Restricted access

Abstract

The interactions of the barotropic instability found at low levels in tropical cyclones and a shear forcing are presented. Previous works have indicated that at low levels of tropical cyclones, the inner edge of the core may be barotropically unstable and thereby able to support counterpropagating vortex Rossby wave interactions. It has also been demonstrated that hurricanes and other barotropic vortices possess innate, dry abilities to maintain themselves when under the duress of vertical wind shear. This work will address how these two separate processes interact with each other.

In this study, the barotropic ring is given additional vorticity in the outer regions to mimic observations more closely. This allows for the outward propagation of energy and simultaneous reduction of the radius of maximum wind. When this vortex is sheared, it is found that the shear forcing, which acts as a de facto wavenumber-1 forcing, does not noticeably alter the growth of the most unstable mode, wavenumber 3. The tilt precession of the vortex is altered greatly, as the tilt becomes both larger and slower. Palinstrophy and deformation analysis indicates that overall peak mixing is also reduced, owing to changes in the axisymmetrization process. Energetics analyses show that the radial component of the shear forcing acts to generate eddies while the tangential component of the shear tends to destroy eddies. The calculations are carried out a second time with another center-finding method, which shows the tilt to be much smaller and more variable while imparting a large wavenumber-1 signal in Fourier analyses.

Corresponding author address: David R. Ryglicki, Naval Research Laboratory, 7 Grace Hopper Avenue, Stop 2, Room 254, Building 704, Monterey, CA 93940. E-mail: david.ryglicki.ctr@nrlmry.navy.mil

Abstract

The interactions of the barotropic instability found at low levels in tropical cyclones and a shear forcing are presented. Previous works have indicated that at low levels of tropical cyclones, the inner edge of the core may be barotropically unstable and thereby able to support counterpropagating vortex Rossby wave interactions. It has also been demonstrated that hurricanes and other barotropic vortices possess innate, dry abilities to maintain themselves when under the duress of vertical wind shear. This work will address how these two separate processes interact with each other.

In this study, the barotropic ring is given additional vorticity in the outer regions to mimic observations more closely. This allows for the outward propagation of energy and simultaneous reduction of the radius of maximum wind. When this vortex is sheared, it is found that the shear forcing, which acts as a de facto wavenumber-1 forcing, does not noticeably alter the growth of the most unstable mode, wavenumber 3. The tilt precession of the vortex is altered greatly, as the tilt becomes both larger and slower. Palinstrophy and deformation analysis indicates that overall peak mixing is also reduced, owing to changes in the axisymmetrization process. Energetics analyses show that the radial component of the shear forcing acts to generate eddies while the tangential component of the shear tends to destroy eddies. The calculations are carried out a second time with another center-finding method, which shows the tilt to be much smaller and more variable while imparting a large wavenumber-1 signal in Fourier analyses.

Corresponding author address: David R. Ryglicki, Naval Research Laboratory, 7 Grace Hopper Avenue, Stop 2, Room 254, Building 704, Monterey, CA 93940. E-mail: david.ryglicki.ctr@nrlmry.navy.mil
Save